11,401 research outputs found

    The early X-ray afterglows of optically bright and dark Gamma-Ray Bursts

    Full text link
    A systematical study on the early X-ray afterglows of both optically bright and dark gamma-ray bursts (B-GRBs and D-GRBs) observed by Swift has been presented. Our sample includes 25 GRBs. Among them 13 are B-GRBs and 12 are D-GRBs. Our results show that the distributions of the X-ray afterglow fluxes (FXF_{X}), the gamma-ray fluxes (SγS_{\gamma}), and the ratio (Rγ,XR_{\gamma, X}) for both the D-GRBs and B-GRBs are similar. The differences of these distributions for the two kinds of GRBs should be statistical fluctuation. These results indicate that the progenitors of the two kinds of GRBs are the same population. Their total energy explosions are comparable. The suppression of the optical emissions from D-GRBs should results from circumburst but not their central engine.Comment: 10 pages, 3 figures, 1 table; accepted by ChJA

    Large periodic time variations of termination shock particles between ~0.5-20 mev and 6-14 mev electrons measured by the crs experiment on Voyager 2 as it crossed into the heliosheath in 2007: An example of freshly accelerated cosmic rays?

    Get PDF
    We have examined features in the structure of the heliosheath using the fine scale time variations of termination shock particles (TSP) between ~0.5 - 20 MeV and electrons between 2.5-14 MeV measured by the CRS instrument as the V2 spacecraft crossed the heliospheric termination shock in 2007. The very disturbed heliosheath at V2 is particularly noteworthy for strong periodic intensity variations of the TSP just after V2 crossed the termination shock (2007.66) reaching a maximum between 2007.75 and 2008.0. A series of 42/21 day periodicities was observed at V2 along with spectral changes of low energy TSP and the acceleration of 6-14 MeV electrons. Evidence is presented for the acceleration of TSP and electrons at the times of the 42/21 day periodicities just after V2 crossed the HTS. Spectra for TSP between 2-20 MeV and electrons between 2.5-14 MeV are derived for three time periods including the time of the HTS crossing. The energy spectra of TSP and electrons at these times of intensity peaks are very similar above ~3 MeV, with exponents of a power law spectrum between -3.0 and -3.6. The ratio of TSP intensities to electron intensities at the same energy is ~500. The electron intensity peaks and minima are generally out of phase with those of nuclei by ~1/2 of a 42 day cycle. These charge dependent intensity differences and the large periodic intensity changes could provide new clues as to a possible acceleration mechanism

    GRB 071028B, a burst behind large amounts of dust in an unabsorbed galaxy

    Get PDF
    We report on the discovery and properties of the fading afterglow and underlying host galaxy of GRB 071028B, thereby facilitating a detailed comparison between these two. Observations were performed with the Gamma-ray Burst Optical and Near-infrared Detector at the 2.2 m telescope on the La Silla Paranal Observatory in Chile. We conducted five observations from 1.9 d to 227.2 d after the trigger and obtained deep images in the g'r'i'z' and JHKs bands. Based on accurate seven-channel photometry covering the optical to near-infrared wavelength range, we derive a photometric redshift of z = 0.94 +0.05 -0.10 for the unabsorbed host galaxy of GRB 071028B. In contrast, we show that the afterglow with an intrinsic extinction of AV(SB) = (0.70 +/- 0.11) mag is moderately absorbed and requires a relatively flat extinction curve. According to the reported Swift/BAT observations, the energetics yield an isotropic energy release of E(gamma,iso.,rest) = (1.4 +2.4 -0.7) x 10^51 erg.Comment: 8 pages, 5 figures, accepted for publication in A&

    Indestructibility of Vopenka's Principle

    Full text link
    We show that Vopenka's Principle and Vopenka cardinals are indestructible under reverse Easton forcing iterations of increasingly directed-closed partial orders, without the need for any preparatory forcing. As a consequence, we are able to prove the relative consistency of these large cardinal axioms with a variety of statements known to be independent of ZFC, such as the generalised continuum hypothesis, the existence of a definable well-order of the universe, and the existence of morasses at many cardinals.Comment: 15 pages, submitted to Israel Journal of Mathematic

    Discovery of the accretion-powered millisecond pulsar SWIFT J1756.9-2508 with a low-mass companion

    Get PDF
    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar, SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 solar masses, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 solar masses (95% confidence level). Such a low mass is inconsistent with brown dwarf models, and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts, dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approximately 13 days and no earlier outbursts were found in archival data.Comment: 13 pages, 2 figures, accepted by Astrophysical Journal Letter

    Fluids of hard ellipsoids: Phase diagram including a nematic instability from Percus-Yevick theory

    Full text link
    An important aspect of molecular fluids is the relation between orientation and translation parts of the two-particle correlations. Especially the detailed knowledge of the influence of orientation correlations is needed to explain and calculate in detail the occurrence of a nematic phase. The simplest model system which shows both orientation and translation correlations is a system of hard ellipsoids. We investigate an isotropic fluid formed of hard ellipsoids with Percus-Yevick theory. Solving the Percus-Yevick equations self-consistently in the high density regime gives a clear criterion for a nematic instability. We calculate in detail the equilibrium phase diagram for a fluid of hard ellipsoids of revolution. Our results compare well with Monte Carlo Simulations and density functional theory.Comment: 7 pages including 4 figure

    Non-Maxwellian Proton Velocity Distributions in Nonradiative Shocks

    Full text link
    The Balmer line profiles of nonradiative supernova remnant shocks provide the means to measure the post-shock proton velocity distribution. While most analyses assume a Maxwellian velocity distribution, this is unlikely to be correct. In particular, neutral atoms that pass through the shock and become ionized downstream form a nonthermal distribution similar to that of pickup ions in the solar wind. We predict the H alpha line profiles from the combination of pickup protons and the ordinary shocked protons, and we consider the extent to which this distribution could affect the shock parameters derived from H alpha profiles. The Maxwellian assumption could lead to an underestimate of shock speed by up to about 15%. The isotropization of the pickup ion population generates wave energy, and we find that for the most favorable parameters this energy could significantly heat the thermal particles. Sufficiently accurate profiles could constrain the strength and direction of the magnetic field in the shocked plasma, and we discuss the distortions from a Gaussian profile to be expected in Tycho's supernova remnant.Comment: 13 pages, 6 figure

    Significant initial results from the environmental measurements experiment on ATS-6

    Get PDF
    The Applications Technology Satellite (ATS-6), launched into synchronous orbit on 30 May 1974, carried a set of six particle detectors and a triaxial fluxgate magnetometer. The particle detectors were able to determine the ion and electron distribution functions from 1 to greater than 10 to the 8th power eV. It was found that the magnetic field is weaker and more tilted than predicted by models which neglect internal plasma and that there is a seasonal dependence to the magnitude and tilt. ATS-6 magnetic field measurements showed the effects of field-aligned currents associated with substorms, and large fluxes of field-aligned particles were observed with the particle detectors. Encounters with the plasmasphere revealed the existence of warm plasma with temperatures up to 30 eV. A variety of correlated waves in both the particles and fields were observed: pulsation continuous oscillations, seen predominantly in the plasmasphere bulge; ultralow frequency (ULF) standing waves; ring current proton ULF waves; and low frequency waves that modulate the energetic electrons. In additon, large scale waves on the energetic-ion-trapping boundary were observed, and the intensity of energetic electrons was modulated in association with the passage of sector boundaries of the interplanetary magnetic field
    corecore