938 research outputs found

    DOE LeRC photovoltaic systems test facility

    Get PDF
    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility

    Computer Modeling of Non-Isothermal Crystallization

    Get PDF
    A realistic computer model for simulating isothermal and non-isothermal phase transformations proceeding by homogeneous and heterogeneous nucleation and interface-limited growth is presented. A new treatment for particle size effects on the crystallization kinetics is developed and is incorporated into the numerical model. Time-dependent nucleation rates, size-dependent growth rates, and surface crystallization are also included. Model predictions are compared with experimental measurements of DSC/DTA peak parameters for the crystallization of lithium disilicate glass as a function of particle size, Pt doping levels, and water content. The quantitative agreement that is demonstrated indicates that the numerical model can be used to extract key kinetic data from easily obtained calorimetric data. The model can also be used to probe nucleation and growth behavior in regimes that are otherwise inaccessible. Based on a fit to data, an earlier prediction that the time-dependent nucleation rate in a DSC/DTA scan can rise above the steady-state value at a temperature higher than the peak in the steady-state rate is demonstrated

    Inferring Private Personal Attributes of Virtual Reality Users from Head and Hand Motion Data

    Full text link
    Motion tracking "telemetry" data lies at the core of nearly all modern virtual reality (VR) and metaverse experiences. While generally presumed innocuous, recent studies have demonstrated that motion data actually has the potential to uniquely identify VR users. In this study, we go a step further, showing that a variety of private user information can be inferred just by analyzing motion data recorded by VR devices. We conducted a large-scale survey of VR users (N=1,006) with dozens of questions ranging from background and demographics to behavioral patterns and health information. We then collected VR motion samples of each user playing the game ``Beat Saber,'' and attempted to infer their survey responses using just their head and hand motion patterns. Using simple machine learning models, many of these attributes could accurately and consistently be inferred from VR motion data alone, highlighting the pressing need for privacy-preserving mechanisms in multi-user VR applications

    Lymphocyte reconstitution following autologous stem cell transplantation for progressive MS

    Get PDF
    BACKGROUND: Autologous stem cell transplantation (ASCT) for progressive multiple sclerosis (MS) may reset the immune repertoire. OBJECTIVE: The objective of this paper is to analyse lymphocyte recovery in patients with progressive MS treated with ASCT. METHODS: Patients with progressive MS not responding to conventional treatment underwent ASCT following conditioning with high-dose cyclophosphamide and antithymocyte globulin. Lymphocyte subset analysis was performed before ASCT and for two years following ASCT. Neurological function was assessed by the EDSS before ASCT and for three years post-ASCT. RESULTS: CD4+ T-cells fell significantly post-transplant and did not return to baseline levels. Recent thymic emigrants and naïve T-cells fell sharply post-transplant but returned to baseline by nine months and twelve months, respectively. T-regulatory cells declined post-transplant and did not return to baseline levels. Th1 and Th2 cells did not change significantly while Th17 cells fell post-transplant but recovered to baseline by six months. Neurological function remained stable in the majority of patients. Progression-free survival was 69% at three years. CONCLUSION: This study demonstrates major changes in the composition of lymphocyte subsets following ASCT for progressive MS. In particular, ablation and subsequent recovery of thymic output is consistent with the concept that ASCT can reset the immune repertoire in MS patients

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour
    • …
    corecore