
84-20-1

Towers of Hanoi and Analysis of Algorithms

Paul Cull and Earl F. Ecklund, Jr.
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

•
It 1 U11.

"Towers of Hanoi and Analysis of Algoritfrms"

Paul Cull and E, F. Ecklund, Jr .

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331

M.R. Categories: 05-04, 68C25, 68E99,

'7331

Paul Cull: I studied at Providence Coll_ege and the University of Chicago,

where I earned my Ph.D. in mathematical biology in 1970. Since then I have

been on the faculty at Oregon State University, where I am now professor of

computer science. When I am not in Oregon I like to be in Italy, where on

various occasions I have been associated with the Laboratory of Cybernetics,

near Naples, and the University of Salerno . My main research interests are

analysis of algorithms and automata theory. I also continue my interest in

mathematical biology, particularly the dynamics of population and neural

nets. I believe that onets teachlng and research should interact. The

material in this paper grew out of my attempts to devise a good example of

an analysis of a problem which could be understood by my classes and did

not involve a problem, like sorting, which they had already seen in several

other courses.

Earl F. Ecklund, Jr. : I . received my Ph;D. in mathematics from Washington

State University in _1972 . Recently I joined the Computer Research Labs of

Tektronix, Inc . , moving from OregonState University. My current research

interests are dataBase systems and operating systems in a distributed

computing system. My avocations include number theory, particularly

factoring algorithms, and squash. ·

.... i _- .

I

r

'

l. INTRODUCTION

Mathematics has applications everywhere, but perhaps nowhere more clearly

than in computer science, and within computer science perhaps nowhere more

clearly than in analysis of algorithms. It would be difficult to draw a line

and say that this part of analysis of algorithms is mathematics and that part

is computer science.

In this paper we want to give a feeling for analysis of algorithms by

investigating, in some detail, algoritJi.ms for the Towers of Hanoi problem.

But first we should say a few general words- about the field of analysis of

algorithms. As a start one should make a bow to Donald Knuth. His "Art of

Computer Programming" [SJ is the standard work in the field . In the last few

years, analysis of algoritfims courses nave become a pa1;t of many undergraduate

programs in computer science. Knuth is still the standard reference, but more

widely used textbooks are Aho, Hopcroft and Ullman (AHU} [f], Baase [2], and

Horowitz and Sahni [4].

The task of analysis of algorithms is three ~.fold ;

1) To produce provably correct algorithms, that is, algorithms which not only

solve the problem they are designed to solve, but which als ·o can be demon~

strated to solve the problem;

2) To compare algorithms for a problem with respect to various measures of

resources (e.g. time and space), so that we can say when one algorithm is

better than another;

3) To find, if possible, the best algorithm for a problem with respect to a

particular measure of resource usage. This involves proving "lower

bounds", that is, showing that every algorithm which solves the problem

must use at least so much of a particular resource. To establish a best

algorithm one must have both a proof of a lower bound and an algorithm

which uses no more than this lower bound.

-1-

Here a distinction should be made between bounds for an algorithm and

bounds for a problem. If one establishes an upper bound on a particular

resource used by an algorithm for a problem, then one has an upper bound both

for the algorithm and for the problem. If one establishes a lower bound for a

problem, then one also has a lower bound on all algorithms which solve this

problem. But demonstrating a lower bound for one algorithm for a problem does

not establish a lower bound for the problem.

In this paper we will exemplify the three ~fold task of analysis of

algorithms using the Towers of Hanoi proolem . This problem is often used as

an example of a problem which can be neatly solved by a recursive algorithm,

as an example of a problem which requires exponential time for its solution

[SJ, and as an example of problem solving strategies [6]. In the Towers of

Hanoi problem one is given three towers, usually called A, Band C, and n

disks of different sizes. Initially the disks are stacked on tower A in order

of size (disk n, the largest, on the bottom; disk 1, the smallest, on the top) .

The problem is to move the stack of disks to tower C, moving the disks one at

a time in such a way that a disk is never stacked on top of a smaller disk.

An extra constraint is that the sequence of moves should be as short as possible.

An algorithm solves the Towers of Hanoi problem if, when the algorithm is given

as input n the number of disks, and the names of the towers, then the algorithm

produces the shortest sequence of moves which conforms to the above rules.

In this paper we will investigate a variety of algorithms which solve the

Towers of Hanoi problem. We will prove the correctness of each algorithm,

calculate the time and space used by each algorithm to allow a comparison among

them, and prove the lower bounds on time and space required by any algorithm

which solves the problem. We will show that the final algorithm which attains

these bounds is the best possible for these measures.

- 2-

2. COMP ARING ALGORITHMS

For any (solvable) proolem there will be an infinity of algorithms which

solve the problem. How do we decide whlch is the "best" algorithm? There are

a number of possible ways to compare algorithms. We will concentrate on two

measures: time and space. We would like to say that one algorithm is faster,

uses less time, than another algorithm if when we run the two algorithms on a

computer the faster one will finish first. Unfortunately, to make this a fair

test we would have to keep a number of conditions constant. For example, we

would have to code the two algorithms · in the same programming language, compile

the two programs using the same compiler~ and run the two programs under the

same operating system on the same computer~ and have no interference with either

program while it is running. Even if we could practically satisfy all these

conditions, we might be chagrined to find that algorithm A is faster under

conditions C, but that algorithm Bis faster under conditions D.

To avoid this unhappy situation we will only calculate time to order. We

let n be some measure of the size of the problem, and give the running time as

a function of n. For example, in the Towers of Hanoi we will use n for the

number of disks. We do not distinguish running times of the same order. For

our purposes two functions of n, f(n) and g(n), have the same order if for some

N there are two positive constants c1 and c2 so that c1 jg(n)I .::_]f(n}j .:_ c2 jg(n) I

for al 1 Ii > N. We symbolize thls relation fiy f (n) ;: e (g (!l-)) , read f (.n) is

order g(n). Thus we will cons·ider two algorithms to take the same time if

their running times have tfl_e same order. In particular, we do not distinguish

between algorithms whose running times are constant multiples of one another.

If we find that algorithm A has a time order which is strictly less than

algorithm B, then we can be confident that for any large enough problem algo~

rithm A will run faster than algorithm B, regardless of the actual conditions.

-3-

On the other hand if algorithms A and B have the same time order, then we will

not predict which one will be faster under a given set of actual conditions.

The space used by an algorithm is the number of bits the algorithm uses

to store and manipulate data. We expect the space to be an increasing function

of n, the size of the problem. This space measurement ignores the number of

bits used to specify the algorithm, which has a fixed constant size independent

of the size of the problem. Since we have chosen bits as our unit, we can be

more exact about space than we can be about time. We can distinguish an algo

rithm which uses 3n bits from an algorithm which uses 2n bits. But we will

not distinguish an algorithm which uses 3n + 7 bits from an algorithm which

uses 3n + 1 bits, because we can hide a constant number of bits within the

algorithm itself.

So we will say that we have the "best" algorithm for a problem if we can

show that the algorithm has minimal time order, and uses minimal space to

within an additive constant.

It is not clear that such a best algorithm must exist. In some problems

there is a time-space trade - off; a faster algorithm requires more space. We

will demonstrate that this sort of trade-off does not exist in the Towers of

Hanoi problem by eventually presenting an algorithm which achieves simulta

neously minimal time and minimal space.

,.

3. A RECURSIVE ALGORITHM

The road to a best algorithm starts with some algorithm which one then

attempts to improve. One often uses some sort of strategy to create an algo

rithm. A very useful strategy is to look at the problem and see if the

solution can be expressed in terms of the solutions of several problems of the

same kind, but of smaller size. This strategy is usually called divide-and

conquer. If the problem yields to the divide-and-conquer approach, one can

construct a recursive algorithm which solves the problem, This construction

also gives almost immediately an inductive proof that the algorithm is correct.

Time and space analyses of a divide-and-conquer algorithm are often straight

forward, since the algorithm directly gives difference equations for time and

space usage.

While these divide-and-conquer algorithms have many nice properties, they

may not use minimal time and space. They may, however, serve as a starting point

for constructing more efficient algorithms.

Consideration of the Towers of Hanoi problem leads to the key observation

that moving the largest disk requires that all of the other disks are out of

the way. Hence the n-1 smaller disks should be moved to tower B, but this is

just another Towers of Hanoi problem with fewer disks. After the largest disk

has been moved the n-1 smaller disks canoe moved from B to C; again this is a

smaller Towers of Hanoi problem. These observations lead to the following

recursive algorithm [6], [7], [9]:

PROCEDURE HANOI(A,B,C,n)

IF n=l THEN move the top disk from tower A to tower C

ELSE HANOI(A,C,B,n-1)

move the top disk from tower A to tower C

HANOI(B,A,C,n-1) .

-5-

Is this the best algorithm for the problem? We will show that this algorithm

has minimum time complexity, but does not .have minimum space complexity . First

though we prove that the algorithm correctly solves th .e problem, the first task

of analysis of algorithms as outlined in the fntroduction .

Proposition 1: The recursive algorithmHANOI correctly solves the Towers of

Hanoi problem.

Proof: Clearly the algorithm gives the correct minimal sequence of moves for

1 disk. If th _ere is more than 1 disk the algorithm moves n - 1 disks to tower B,

then moves the largest disk to tower C, and then moves the n- 1 disks from

tower B to tower C. This is precisely what is required in a minimum move

algorithm because according to the rules the largest disk can only be moved

when all the other n - 1 disks are on a single tower. So the n- 1 disks must be

moved from tower A to some other tower . Clearly at least one move is required

to move the largest disk from tower A to tower C. When the largest disk is

moved to tower C, the other n-1 disks are on a single tower and still have to

be moved to tower C. By inductively assuming n-1 disks are moved in the minimum

number of moves, we see that the algorithm for n disks makes no more than the

minimal number of moves and finishes with all then disks moved from tower A to

tower C. 3

Here we should remark that we have not only produced a provably correct

algorithm for the problem; we have also shown that the minimal sequence of moves

is unique. This uniqueness makes the proof of correctness easy. The proof

would be more complicated if more than one minimum sequence were possible .

We would like to calculate the running time of HANOI, but we don't know

how long various operations will take. How long will it take to move a disk?

How long will it take to subtract 1 from n? How long will it ta ke to test if

n = 1? How long will it take to issue a procedure call? Because we only wish

- 6-

.,

,.

to calculate time to order we don't have to answer these questions exactly,

but we do have to make a distinction between operations which take a constant

amount of time, independent of n, and operations whose running time depends

on n .

One possibility is to assume that each operation takes constant time inde

pendent of n . AI-ill [1J calls .this assumption . the ii.riiforrn cost criterion. With

this uniform cost assumption and letting T(n) oe the runni .ng time for n disks

we have the difference equation

T(n) = 2T(n-l) + c

because there are 2 calls to the same procedure with n- 1 ri .ngs and c is the

sum of the constant running times for the various operations. Letting T(1) be

the running time of the algorithm for 1 disk, we find

T(n) = (T(l) + c)2n ~l - c

which can be verified by direct substitution. This gives

T(n) = 0(2n)

since T(l) 2n < T(n) < (T(l) + c) 2n,
2 - 2

Anoth.er possibility- is to assUJ!le that some of th _e operations have running

times which are a function of n . But which function of n should we use? Each

of the numbers in the algorithm is between 1 and n, and the disks can also be

represented by numbers between 1 and n. Since such numbers can be represented

using about log n bits, it seems reasonable to assume that each operation

which manipulates numbers or disks has running time which is a constant times

. log n. AHU [I] calls this the logarithmic cost criterion and suggests using

it when the numbers used by an algorithm do not have fixed bounds . Using the

logarithmic cost criterion we have the difference equation

T(n) = 2T(n - l) + c log n

for the running time of the algorithm. This difference equation has the solution

- 7-

.,

which can be verified by substitution. Since the summation in this solution

converges, as one can demonstrate by the ratio test, and assuming that the

constants are positive, we have

T(n) = e (2n).

Since both cost criteria give the same running time, we conclude:

Proposition 2: The algorithm HANOI has running time e (_2n).

Although we have established the running time for a particular algorithm

which solves the Towers of Hanoi problem, we have not yet established the time

complexity of the problem . We need to establish a lower bound so that every

algorithm which solves the problem must have running time greater than or

equal to the lower bound. n We estab.lish 8 (_2) as the lower bound in the proof

of the following proposition.

Proposition 3: The Towers of Hanoi problem has time complexity 8(2n).

Proof: Following the proof of Proposition 1, a straightforward induction

shows that the minimal number of moves needed to solve the Towers of Hanoi

problem is 2n-l. Since each move requires at least constant time we have

established the lower bound on time complexity .

An upper bound for the time complexity of the problem comes from

Proposition 2. Since the upper bound and lower bound are equal to order, we

have established the 8(2n) time complexity of the problem . ~

Now that we know HANOI's time complexity we would like to consider its

space complexity . First we will establish a lower bound on space which follows

from the lower bound on time.

Proposition 4: Any algorithm which solves the Towers of Hanoi problem must

use at least n + constant bits of storage .

- 8-

t

,.

Proof: Since the algorithm must produce 2n- l moves to solve the problem, the

algorithm must be able to distinguish 2n different situations. If the algorithm

did not distinguish this many situations then the algorithm would halt in the

same number of moves after each of the two nondistinguished situations, which

would result in an error in at least one of the cases.

The number of situations distinguished by an algorithm is equal to the

number of storage situations times the ntllllber of internal situations within

the algorithm. Since the algorithm has a fixed finite size it can have only

a constant number of different internal situations . The nlllllber of storage

· Thus C•2BITS > 2n, situations (states) is 2 to the number of storage bits.

and so BITS~ n - log C = n +constant.a

In order to discuss the space complexity of the recursive algorithm ~ let

us now consider the data structure used . Two possiole data structures are th .e

array and the stack. An array is a set of locations indexed by a set of con

secutive integers so that the information stored at a location in the array can

be referenced by indicating the integer which indexes the location. For example ,

the information at location I in the array ARRAY would be referenced by ARRAY[I].

A stack is a linearly ordered set of locations in which information can be.

inserted or deleted only at the beginning of the stack .

The towers could each be represented by an array with n locations , and

each location would need at most log n bits. So an array data structure with

0(n log n) bits would suffice. Alternately, each tower could be represented by

a stack. Each stack location would need log n bits, so again this is an

0(n log n) bit structure, Actually a savings would be made. Since only n

disks have to be represented, the stack structure needs only n locations versu s

the 3n locations used by the array structure , Another possible structure is an

. h . h h . th 1 h ld h f h tc. h h · th d · k array 1n w 1c t e 1 e ement o s t e name o t e tower on w11.1c t e 1 1 s .

- 9-

is located. This structure uses only 0(J1) bits. Yet another possibility is

to not represent the towers, but to output the moves in th .e form FROM· TO

Thus we could use no storage for the towers.

The recursive algorithm still requires space for its recursive stack.

When a recursive algorithm calls itself, the parameters for this new call

will take the places of the previous parameters, so these previous parameters

are placed on a stack from which they can be recalled when the new call is

completed. Also placed on the stack is the return address, the position in

the algorithm at which execution of the old call should be resumed. All of

this information, the parameters and the return address, for a single call are

referred to as a stack frame. At most n stack frames will be active at any

time and each frame will use a constant number of bits for the names of the

towers and log n bits for thenumber of disks. So the recursive algorithm

will use 0 (n log n) bits whether or not the towers are actually represented.

We summarize these considerations f>y the following proposition ,

Proposition 5: The recursive algorithm HANOI correctly solves the Towers of

Hanoi problem and uses 8(2n) time and 8(n log n) space .

The recursive algorithm uses more than minimal space. We are faced with

several possibilities:

1) Minimal space is only a lower bound and is not attainable by any algorithm;

2) Minimal space can only be achieved by an algorithm which uses more than

minimal time;

3) Some other algorithm attains both minimal time and minimal space,

By developing a series of iterative algorithms, we will arrive at an algorithm

which uses both minimal time and minimal space.

- 10-

4. SOME ITERATIVE ALGORITHMS

As a first step in o6taining a better algorithm, we will consider an

iterative algorithm which. simulates th.e recursive algorithm for rt~ 2 . This

algorithm RECURSIVE SIM is similar to an algorithm giyen by Tenenbaum and

Augenstein [7], but we have chosen to explicitly keep track of the stack

counter because this will aid us in finding an algorithm using even less space .

PROCEDURE RECURSIVE SIM (A,B,C,n)

I:= 1

Ll[l]:= A; L2[1]:= C; L3[1]:= B

NUM[l]:= n-1 ; PAR[l]:= 1 ; PAR[O]:= 1

WHILE I> 1 DO

IF NUM[I] > 1

THEN Ll[I+l]:= Ll[I]

L2[I+I]:= L3[I]

L3[I+I]:= L2[I]

NUM[I+I]:= NUM[I] - 1

PAR[I+I]:= 1

I:= I+l

ELSE MOVE FROM Ll[I] TO L3[I]

WHILE PAR[I] = 2 DO

I:= I - 1

IF I> 1 THEN MOVE FROM Ll[I] TO L2[I]

PAR[I]:= 2

TEMP:= Ll[IJ

Ll[I] := L3[I]

L3[I]:= L2[I]

L2[I]:= TEMP

- 11-

The names of the towers are stored in the three arrays LI, L2, L3; the

number of disks in a recursive call is stored in NUM; and the value of PAR

indicates whether a call is the first or second of a pair of recursive calls.

RECURSIVE SIM sets up the parameters for the call HANOI (A,C,B,n-1).

When the last move for this call is made, the arrayswill contain the para

meters for calls with 1 through n-2 disks, where each of these calls will

have PAR=2. The arrayswill still contain the parameters for the (A,C,B,n-1)

call with PAR=l. The inner WHILE loop will pop each of the calls with PAR=2,

leaving the array counter pointing at tli..e (A,C,B,n-1) call. Since I will be

1 at this point the IF condition is satisfied and the MOVE FROM Ll[I] TO L2[I]

accomplishes the MOVE FROM A TO C of the recursive algorithm HANOI. The

following assignment statements set ·up the call (B,A,C,n-1) with PAR=2. So

when the moves for this call are completed all of the calls in the array will

have PAR=2, and the inner WHILE loop will pop all of these calls setting I to 0.

Then the IF condition will be false, so no operations are carried out, and the

outer WHILE condition will be false so the algorithm will terminate.

Proposition 6: The RECURSIVE SIM algorithm correctly solves the Towers of

Hanoi problem, and uses 8 (2n) time and 8 (n log n) space.

Proof; Coi;rectnes:s follows since this algorithm simulates the recursive algo

rithm which we have proved correct. The major space usage is in the arrays.

Since each time I is incremented the corresponding NUM[I] is decremented and

since NUM[I] never falls below 1, there are at most n-1 locations ever used

in an array. The four arrays Ll, L2, L3, and PAR use only a constant amount

of space for each element, but NUM must store a number as large as n-1 so it

uses 8()og n) bits for an element. Thus the arrays use 0(n log n) bits.

Now we ha;ire to argue aoout time usage , Most of th _e operations deal with

constant-sized operands so th _ese operations will take constant time. The

-12-

exceptional operations are incrementi _ng, decrementing, ass _igning, and compar

ing numbers which inay have 0(.log n) bits. A difference equation for the time

is

T(n) = 2T(n-l) + C log n

where T(n) is the time to solve a problem with n disks and Clog n is the time

for manipulating the numbers with 0(log n) bits. As in the proof of Proposi

tion 1 we have T (n) = 0 (2n) . 0

Notice that this algorithm does not improve on the recursive algorithm,

but study of this form can lead to a saving of space. Storing the array NUM

causes the use of 0(n log n) space. If we did not have to store NUM, the algo

rithm would use only 0(n) space. Do we need to save NUM? NUM is used as a

control variable so it seems necessary. But if we look at NUM[l] + 1 we get n.

When NUM[I+l] is set, it is set equal to NUM[I] - 1, but then

NUM[I+l] +I+ 1 = NUM[I] 1 + I + 1

= NUM[I] +I= n.

Thus the information we need about NUM is stored in I and n. So if we replace

the test on NUM[I] = 1 with a test on I= n-1, we can dispense with storing NUM

and improve the space complexity from 0(p log n) to 0(p). This replacement does

not increase the time complexity of any step in the algorithm, so the time

complexity remains 0(2n).

I
r

Our new procedure is

PROCEDURE NEW SIM (A,B,C,n)

I: = 1

Ll[l]:= A; L2[1]:= C; L3[1]:= B

PAR[l]:= 1 ; PAR[O]:= 1

WHILE I> 1 DO

.!!_ I ~ n-1

THEN Ll[I+l]:= Ll[I]

L2[I+l]:= L3[I]

L3[I+l]:= L2[I)

PAR[I+l]:= 1

I:= I+l

ELSE MOVE FROM Ll[I] TO L3[I]

WHILE PAR[I] = 2 DO

I:= I~l

IF I> l THEN MOVE PROM Ll[I] TO L2[I]

PAR[I]:= 2

TEMP:= Ll[I]

Ll[I) := L3[I]

L3[I]:= L2[I] .

L2[IJ:= TEMP

From the above observation we have:

Proposition 7: NEW SIM correctly solves the Towers of Hanoi problem a.nd uses

0(2n) time and 0(n) space.

-14-

Although we have reached 8(n) space .we would like to decrease the space

even further, hopefully ton+ constant bits. If we look at the array PAR,

we find that the algoritfun scans PAR to find the first element not equal

to 2, replaces that element by 2 and then replaces all the previous 2 's by

l's. This is analogous to the familiar operation . of adding 1 to a binary

number, in which we find the first O,replace it by a 1, and replace all the

previous l's by O's . So it seems that we can replace the array PAR by a

simple counter. The number of bits in the counter will, of course, depend

on n.

So far this has not resulted in any saving of space. Will there be

enough information in the counter to determine from which tower we should

move a disk? The affirmatiye answer will enable us to a.chi.eve a minimal

space algorithm. To motivate the design of our minimal space algorithm w-e

will examine the sequence of .31 moves needed to solve the problem with 5

disks. This sequence is shown in Table 1 ,

-15-

DECIMAL
TOWER 0 TOWER 1 TOWER 2 .COUNT COUNT DISK FROM TO

12345 0 00000 1 0 2
2345 1 1 00001 2 0 1

345 2 1 2 00010 1 2 1
w 345 12 3 00011 3 0 2

45 12 3 4 00100 1 1 0
145 2 3 5 00101 2 1 2
145 23 6 00110 ·1 0 2

45 123 7 00111 4 0 1

5 4 123 8 01000 1 2 1
5 14 23 9 01001 2 2 0

25 14 3 10 01010 1 1 0
125 4 3 11 01011 3 2 1

125 34 12 01100 1 0 2
25 34 1 13 01101 2 0 1

5 234 1 14 01110 1 2 1
5 1234 15 01111 5 0 2

1234 5 16 10000 1 1 0
1 234 5 17 10001 2 1 2
1 34 25 18 10010 1 0 2

34 125 19 10011 3 1 0

3 4 125 20 10100 1 2 1
3 14 25 21 10101 2 2 0

23 14 5 22 iOllO 1 1 0

123 4 5 23 10111 4 1 2

123 45 24 11000 1 0 2

23 145 25 11001 2 0 1
3 2 145 26 11010 1 2 1
3 12 45 27 11011 3 0 2

12 345 28 11100 1 1 0

1 2 345 29 11101 2 1 2

1 2345 30 11110 1 0 2

12345 31 11111

Table 1. Towers of Hanoi Solution for 5 disks .

- 16-

Every other move in the solution involves moving disk 1. So if we know

which tower contains disk 1 we would know from which . tower to move, in alter

nate moves, but we might not know which tower to move to. When we consider

the three towers to be arranged in circle we see from table 1 that disk 1

always moves in a counterclockwise direction when we have an odd number of

disks. Similarly disk 1 always moves in a clockwise direction when we have

an even number of disks. Thus by keeping track of the tower which contains

disk 1 and whether n is odd or even we would know how to make every other

move.

For the moves which do not involve disk 1, we know that the move involves

the two towers which do not contain disk 1. Looking again at table 1 we see

that the odd numbered disks always move in the same direction as disk 1 and

the even numbered disks always move in the opposite direction. So knowing

the towers involved and whether the disk to be moved is odd or even would

allow us to decide which way to move.

Can we determine from a counter whether the disk being moved is odd or

even? If we look at the COUNT column of table 1 we see that the position of

the rightmost O tells us the number of the disk to be moved. Thus a single

counter with n bits is sufficient to solve the Towers of Hanoi problem.

We use these facts to construct the algorithm which follows ,

PROCEDURE TOWERS (n)

T:= 0 (*TOWER NUMBER COMPUTED MODULO 3*)

COUNT:= 0 (*COUNT HAS n BITS*):

{
1 if n is even

P:=
1 if n is odd

WHILE TRUE DO

MOVE DISK 1 FROM T TO T+P

T:= T+P

COUNT:= COUNT+ 1

IF COUNT= ALL l's THEN RETURN

IF RIGHTMOST O IN COUNT IS IN EVEN POSITION

THEN MOVE DISK FROM T-P TO T+P

ELSE MOVE DISK FROM T+P TO T-P

COUNT:= COUNT+ 1

ENDWHILE

n 2 1

couNT f~_o _______ o_o_.j

-18 -

A picture of the storage used for
COUNT.

Notice that it has n bits, and that
we have called the rightmost bit
position 1. The positions from right
to left are then odd, evens odd,
even • ...

"

Remarks: We can still improve this algorithm by removing the first

COUNT :=COUNT+ 1 statement and deleting the rightmost bit of

COUNT. This would also require changing the numbering of the bits

in COUNT so that the rightmost bit is bit 0. An algorithm similar

to our TOWERS has recently been published By T. R. \lfalsh [8].

We have to show that TOWERS correctly solves the Towers of Hanoi problem.

We do this by proving that a certain sequence of moves has been accomplished

when COUNT contains a number of the form 2k-l, so that when k = n, the

sequence of moves for HANOI (A,B,C,n) has been completed and the procedure

will terminate since COUNT contains all l's .

Proposition 8: When COONT = 2k - 1, that is COUNT = I 00 ... 01. . . 1 I with k l's, then

if k P. n(MOD 2) the correct moves for HANOI (A,C,B,k) have been completed and

T contains 1 (which represents B),

if k E n (MOD 2) the correct moves for HANOI (A, B, C, k) have been completed and

T contains 2 (which represents C) .

Proof: If k = 1 the single move T to T + P has been completed, which is A to

C if n is odd, and is A to B if n is even, and T contains T + P which is 2 if

n is odd and is 1 if n is even. This agrees with our claim.

Notice that COUNT can only take on th.e value 2k~l iJTIIJ)ediately before

the IF ... RETURN statement. Assume the moves for either HANOI (A,B,C,k)

or HANOI (A,C,B,k) have been completed. If k1 n(MOD 2) the next move will be A

to C since by assumption T now contains l; if k is odd the move is T - P to T + P

which is 1 - (1) to 1 + 1 which represents A to C, and if k is even the move

is T + P to T - P which is 1 + (-1) to 1 - (-1) which represents A to C. If

k = n(MOD 2) the next move will be A to B since by assumption T now contains 2;

if k is odd the move is T - P to T + P which is 2 - (-1) to 2 + (-1) which

-19-

'\

represents A to B, and if k is even the move is T + P to T - P which is 2 + 1

to 2 - 1 which represents A to B.

Next COUNT will be incremented to I 0 ... 010 .. . 0 I, i.e., k trailing O's .

When COUNT= 2k+l_l the algorithm will have repeated the same sequence of

moves as before since it only "sees" the rightmost information in COUNT, with

the difference that Twill have started with a different value. The different

starting value of Twill .result in a cyclic permutation of the labels.

If k 1-n(MOD 2) then the completed . moves will be

HANOI (A,C,B,k)

A to C

HANOI (B,A,C,k)

giving HANOI (A,B,C , k+l) with k+l = n(MOD 2) and Twill contain 2 (i.e ., 1 + 1).

If k = n(MOD 2) then the completed moves will be

HANOI (A,B,C,k)

A to B

HANOI (C,A,B,k)

giving HANOI (A, C, B, k+ 1) with k+ 1 1-n(MOD. 2)- and T will contain 1 Ci. e . , 2 + 2). 0
Proposition 9: The algorithm TOWERS uses 0(2n) time and n + constant bits of

space .

Proof: For space usage, there are n bits in COUNT, and a constant number of

bits are used for T and P.

For time, the initialization takes 0(n) and the WHILE loop is iterated

2n-l times. If each iteration took a constant amount of time we would have

0(2n), but the test and increment instruction on count could take time 0(n)

giving 0(n 2n). So we have to show that only 0(2n) time is used .

If the ~alue in COUNT is even then incrementing and testing will only

require looking at one bit. If the value in COUNT is odd and (COUNT ~. 1) /2

- 20-

0

\

is even, then the algorithm only looks at 2 bits. In fact, the algorithm

will look at
n

k bits in COUNT in 2n-k cases. Thus the time used will he

8(E k•2n-k) =
k=l

00

E k•2-k converges . 0
k=l

We summarize these results in the following theorem.

Theorem: Any algorithm which solves the Towers of Hanoi problem for n disks

n must use at least 8(2) time and n + constant bits of storage. The algo-

rithm TOWERS solves the problem and simultaneously uses minimum time and

minimum space .

- 21-

5. SUMMARY AND CONCLUSION

The goal of best algorithm has been attained. To attain the goal we

started by analyzing the problem in a divide-and-conquer fashion and deriving

from this analysis a recursive algorithm which we could prove solved the problem .

Next we analyzed the time used by this recursive aigorithm and argued that to

order this time was best possible since any solution of the problem requires

2n-l moves.

From the lower bound on time we derived a lower bound of n hits on the

space used by any algorithm which solves the problem . A space analysis of the

recursive algorithm showed that it used more space than our lower bound, and

that the space -1.1sage was required for the recursive stack.

To decrease the space usage we built an iterative algorithm which directly

simulated the recursive algorithm. Since this was a direct siJllulation it used

the same amount of space, but we now could investigate whether all th.e informa

tion being stored was necessary. We found that storing the number of disks on

each simulated recursive call was unnecessary. This led to a new iterative

algorithm which used only 0(n) space.

We then noticed that one of the arrays was functioning as a counter, but

replacing it by a counter did not decrease the space usage. Next we investigated

whether there was sufficient information in the counter to tell us which disk

to move and where to move it. We found that we could tell which disk to move,

but where to move the disk depended on whether the total number of disks was

odd or even.

When we added a variable to keep track of the parity of the number of

disks and another variable to keep track of the tower which _ contained the

smallest disk, we found that we had sufficient information to solve the problem,

and that we could dispense with the arrays which kept track of tJi_e tower names

for each simulated recursive call.

0

At this point we had an algorithm which used n + constant nwnber of bits,

which was equal to our lower bound on space . We then showed that the algorithm

still used minimal time order, and hence we had obtained a best algorithm .

We may remark that there could be other quite different looking algorithms

which solve the problem and use minimal time and space . What we have tried to

exemplify is a design methodol _ogy which is frequently used in deriving good

algorithms . We have chosen the Towers of Hanoi problem because for this

problem we could arrive at the goal of best algorithm . For other problems the

process may get stuck . We might find a provable algorithm and lower bounds for

the problem, but find that there is a gap between the running time of the algo

rithm and the lower oound, or find a gap between the space usage of th.e algo

rithm and the lower oound . Often the ne.xt crucial insight, like a disk always

moves clockwise or counterclockwise , migh.t not be di scovered for many years

after an algorithm is created . Alternately a discovered algorithm may be a

best algorithm, out an insight · is needed to raise the lower bounds for the

proolem.

In any case, we hope that we have given the reader some feel for analysis

of algorithms.

6. EXERCISES

To see that you have understood a technique, it is useful to try to use

the technique on similar problems. We give here two more algorithms for the

Towers of Hanoi problem. Your task, if you decide to accept it, is to show

that these algorithms do in fact solve the problem (i.e., prove that they

are correct) and to determine the time and space usage of these algorithms.

Exercise 1:

PROCEDURE HANOI ITERATIVE (A,B,C,n)

IF n mod 2 = 0 THEN MOVE[!]:= A TO B

ELSE MOVE[!]:= A TO C

K:= 1

WHILE n > 1 DO

n:= n-1; K:= 2*K

IF n mod 2 = 0 THEN MOVE[K]:= A TO B

Ll:= C; L2:= A; L3:= B

ELSE MOVE[K]:= A TO C

Ll:= B; L2:= C; L3:= A

FOR I:= 1 TO K- 1 DO

CASE MOVE[!] OF

A TO B MOVE[K+I] := Ll TO L2

A TO C MOVE[K+I]:= Ll TO L3

B TO A MOVE[K+I] := L2 TO Ll

B TO C MOVE[K+I]:= L2 TO L3

C TO A MOVE[K+I]:= L3 TO Ll

C TO B MOVE[K+I] := L3 TO L2

Hints 1: For correctness you may want to introduce a new variable and prove

a statement which says that on each iteration of the WHILE loop th .e new

... 24

variable increases (or if you want decreases) and that at the end of each

iteration a Hanoi problem whose size depends on the new variable has been

solved. You will need to give the tower names for the problem which has been

solved. You will also need to specify the value of th__e new variable,

For space, you should know that the algorithm is storing each move in

the array MOVE.

For time, you may want to consider both the uniform and the logarithmic

cost measures.

Exercise 2: (Buneman and Levy [3])

MOVE SMALLEST DISK ONE TOWER CLOCKWISE

WHILE A DISK (OTHER THAN THE SMALLEST) CAN BE MOVED DO

MOVE THAT DISK

MOVE THE SMALLEST DISK ONE TOWER CLOCKWISE

ENDWHILE

Hints 2: For correctness, you should be careful since this algorithm only

solves the original Towers of Hanoi problem when the number of disks is even.

You will probably want to introduce a new variable and prove a statement

about the configuration of the disks when the number of moves completed is a

specific function of your new variable.

For time and space, the above algorithm is incomplete since it doesn't

specify the data structure used to determine if a disk can be moved. You

might consider representing each tower by a stack of integers with the

integers representing the disks on the tower. Alternately you might consider

representing the information by an array DISK, so that DISK[I] contains the

name of the tower which contains the I th largest disk. You may also find it

f 1 h h h .th d" k . d 2n-i . use u to sow tat t e 1 1.s is move times.

,,..25

.,

REFERENCES

[1] A. Aho~ J. Hopcroft, and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1974 .

[2] S. Baase; Computer Algorithms, Addison.,..Wesley, Reading, Massachusetts,
1978.

[3] P. Buneman and L. Levy, The Towers of Hanoi Problem, Information
Processing Letters 10, 1980, pp. 243.-244,

[4] E. Horowitz ands. Sahni, Fundamentals of Computer Algorithms, Computer
Science Press, Rockville, Maryland, 1978.

[SJ D. Knuth; The Art of Computer PrograJiIJiling,
Vol. 1 Fundamental Algorithms (2nd edition, 1973)
Vol. 2 Seminumerical Algoritfuns (2nd edition, 1981)
Vol. 3 Search and Sorting 0973)
Addison-Wesley, Reading, Massachusetts.

[6] H. Simon, The Functional Equivalence of Problem Solving Skills,
Cognitive Psychology, 1975, pp. 268-288,

[7] A. Tenenbaum and M. Augenstein, Data Structures Using PASCAL,
Prentice-Hall, Englewood Cliffs, New Jersey, 1981, pp. 149-154,

[8] T. R. Walsh; The Towers of Hanoi Revisited: Moving the Rings by Counting
the Moves, Information Processing Letters 15, 1982, pp. 64-67.

[9] D. Wood, The Towers of Brafuna and Hanoi Revisited, Computer Science
Technical Report No. 80-CS-23, McMaster University, 1980.

	20221020130321011
	20221020130412095

