51 research outputs found

    Orientation Growth and Magnetic Properties of Electrochemical Deposited Nickel Nanowire Arrays

    Get PDF
    Highly ordered ferromagnetic metal nanowire arrays with preferred growth direction show potential applications in electronic and spintronic devices. In this work, by employing a porous anodic aluminum oxide template-assisted electrodeposition method, we successfully prepared Ni nanowire arrays. Importantly, the growth direction of Ni nanowire arrays can be controlled by varying the current densities. The crystalline and growth orientation of Ni nanowire arrays show effects on magnetic properties. Single-crystallinity Ni nanowires with [110] orientation show the best magnetic properties, including coercivity and squareness, along the parallel direction of the nanowire axis. The current preparation strategy can be used to obtain other nanowire arrays (such as metal, alloy, and semiconductor) with controlled growth direction in confined space, and is therefore of broad interest for different applications

    Characterization of <i>Alternaria</i> Species Associated with Black Spot of Strawberry in Dandong, China

    No full text
    Dandong has become the largest strawberry production and export base in China. Strawberry black spot disease is widespread and causes significant economic losses to strawberry growers in both the growing and harvest seasons. Until now, no study has reported the presence of the Alternaria species, the pathogen of strawberry black spot disease, in Dandong, Liaoning province, China. In 2020–2022, 108 isolates were obtained from strawberry leaves with typical symptoms of strawberry black spot disease from 56 major professional growing operations. Combined with morphological and molecular characteristics, the majority of isolates were identified as A. tenuissima (78 isolates, 72.2%), which had established total supremacy, followed by A. alternata (30 isolates, 27.8%). The pathogenicity results show that A. tenuissima and A. alternata are the two main pathogenic factors of strawberry black spot disease, the disease indexes of which were designated as 49.6–100.0% and 20.4–59.5%. To our knowledge, this paper is the first to identify A. tenuissima and A. alternata as causing black spot disease in strawberries in Dandong, China

    Cell cycle-related lncRNAs and mRNAs in osteoarthritis chondrocytes in a Northwest Chinese Han Population

    No full text
    Background: A group of differentially expressed long non-coding RNAs (lncRNAs) have been shown to play key roles in osteoarthritis (OA), although they represented only a small proportion of lncRNAs that may be biologically and physiologically relevant. Since our knowledge of regulatory functions of non-coding RNAs is still limited, it is important to gain better understanding of their relation to the pathogenesis of OA. Methods: We performed mRNA and lncRNA microarray analysis to detect differentially expressed RNAs in chondrocytes from three OA patients compared with four healthy controls. Then, enrichment analysis of the differentially expressed mRNAs was carried out to define disease molecular networks, pathways and gene ontology (GO) function. Furthermore, target gene prediction based on the co-expression network was performed to reveal the potential relationships between lncRNAs and mRNAs, contributing an exploration of a role of lncRNAs in OA mechanism. Quantitative RT-PCR analyses were used to demonstrate the reliability of the experimental results. Findings: Altogether 990 lncRNAs (666 up-regulated and 324 down-regulated) and 546 mRNAs (419 up-regulated and 127 down-regulated) were differentially expressed in OA samples compared with the normal ones. The enrichment analysis revealed a set of genes involved in cell cycle. In total, 854 pairs of mRNA and lncRNA were highly linked, and further target prediction appointed 12 genes specifically for their corresponding lncRNAs. The lncRNAs lncRNA-CTD-2184D3.4, ENST00000564198.1, and ENST00000520562.1 were predicted to regulate SPC24, GALM, and ZNF345 mRNA expressions in OA. Interpretation: This study uncovered several novel genes potentially important in pathogenesis of OA, and forecast the potential function of lnc-CTD-2184D3.4, especially for the cell cycle in the chondrocytes. These findings may promote additional aspects in studies of OA

    The role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis.

    No full text
    T-2 toxin, a mycotoxin produced by Fusarium species, has been shown to cause diverse toxic effects in animals and is also a possible pathogenic factor of Kashin-Beck disease (KBD). The role of mitochondria in KBD is recognized in our recent research. The aim of this study was to evaluate the role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis to understand the pathogenesis of KBD. T-2 toxin decreased chondrocytes viabilities in concentration- and time-dependent manners. Exposure to T-2 toxin can reduce activities of mitochondrial complexes III, IV and V, ΔΨm and the cellular ATP, while intracellular ROS increased following treatment with T-2 toxin. Furthermore, mitochondrial cytochrome c release, caspase-9 and 3 activation and chondrocytes apoptosis were also obviously observed. Interestingly, Selenium (Se) can partly block T-2 toxin -induced mitochondria dysfunction, oxidative damage and chondrocytes apoptosis. These results suggest that the effect of T-2 toxin on human chondrocytes apoptosis may be mediated by a mitochondrial pathway, which is highly consistent with the chondrocytes changes in KBD

    Roles of glycoprotein glycosylation in the pathogenesis of an endemic osteoarthritis, Kashin–Beck disease, and effectiveness evaluation of sodium hyaluronate treatment

    No full text
    Background/aim: We aimed to explore the roles of glycoprotein glycosylation in the pathogenesis of Kashin–Beck disease (KBD), and evaluated the effectiveness of sodium hyaluronate treatment. Materials and methods: Blood and saliva were collected from KBD patients before and after the injection of sodium hyaluronate. Normal healthy subjects were included as controls. Saliva and serum lectin microarrays and saliva and serum microarray verifications were used to screen and confirm the differences in lectin levels among the three groups. Results: In saliva lectin microarray, bindings to Sophora japonica agglutinin (SJA), Griffonia (Bandeiraea) simplicifolia lectin I (GSL-I), Euonymus europaeus lectin (EEL), Maackia amurensis lectin II (MAL-II), Sambucus nigra lectin (SNA), Hippeastrum hybrid lectin (HHL), and Aleuria aurantia lectin (AAL) were higher in the untreated KBD patients than in the control group. Increased levels of HHL, MAL-II, and GSL-I in the untreated KBD patients discriminated them in particular from the treated ones. Jacalin was lower in the untreated KBD patients compared to the treated KBD and control groups. In serum lectin microarray, HHL and peanut agglutinin (PNA) were increased in the untreated KBD group in comparison to the control one. AAL, Phaseolus vulgaris agglutinin (E+L) (PHA- E+L), and Psophocarpus tetragonolobus lectin I (PTL-I) were lower in the untreated KBD patients compared to the treated KBD and control groups. Hyaluronate treatment appeared to normalize SNA, AAL, and MAL-II levels in saliva, and HHL, PNA, AAL, PTL-I, and PHA-E+L levels in serum. Saliva reversed microarray verification confirmed significant differences between the groups in SNA and Jacalin, in particular for GSL-I levels, while serum reversed microarray verification indicated that HHL, PNA, and AAL levels returned to normal levels after the hyaluronate treatment. Lectin blot confirmed significant differences in HHL, AAL, and Jacalin in saliva, and HHL, PNA, PHA-E+L, and AAL in serum. Conclusion: HHL in saliva and serum may be a valuable diagnostic biomarker of KBD, and it may be used as follow-up for the hyaluronate treatment

    The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies

    No full text
    Joint health: the rare micronutrient selenium may be crucial Selenium, a micronutrient found in brazil nuts, shiitake mushrooms, and most meats, may aid in treating joint diseases, including the most common form of arthritis, osteoarthritis (OA). In addition to thyroid hormone metabolism and immunity, selenium is important in antioxidant defense. Oxidative damage can destroy cartilage and harm joints, and selenium deficiency is implicated in several joint diseases. Jin-Hong Kim at Seoul National University in South Korea and co-workers reviewed selenium metabolism, focusing on OA and and Kashin–Beck disease, a skeletal development disorder prevalent in selenium-deficient areas of northeast Asia. They report that selenium-containing proteins protect cells against oxidative damage and that selenium is crucial to cartilage production. Further investigation of selenium metabolism may point the way to new treatments for OA and other joint diseases
    corecore