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Abstract: Highly ordered ferromagnetic metal nanowire arrays with preferred growth direction show
potential applications in electronic and spintronic devices. In this work, by employing a porous
anodic aluminum oxide template-assisted electrodeposition method, we successfully prepared Ni
nanowire arrays. Importantly, the growth direction of Ni nanowire arrays can be controlled by
varying the current densities. The crystalline and growth orientation of Ni nanowire arrays show
effects on magnetic properties. Single-crystallinity Ni nanowires with [110] orientation show the best
magnetic properties, including coercivity and squareness, along the parallel direction of the nanowire
axis. The current preparation strategy can be used to obtain other nanowire arrays (such as metal,
alloy, and semiconductor) with controlled growth direction in confined space, and is therefore of
broad interest for different applications.

Keywords: Nanowire arrays; orientation; electrodeposition; magnetic properties

1. Introduction

With the rapid development of spintronics, information storage and the logical operation based
on magnetic domain wall dynamics are proposed [1–5]. By controlling the movement or the injection
of domain walls in ferromagnetic nanowire arrays, ultra-high density storage, or ultra-fast logical
operation is expected to be achieved. Precise control of the structural parameters, such as size,
composition, orientation, and assembly of ferromagnetic nanowires is of importance to obtain the
desired functional properties and device performance [6–8]. Lithography is a typical top-down method
to fabricate nanowire arrays [9–11]. Nevertheless, expensive equipment and complex fabrication
processes hinder the large-scale applications of this technique. In comparison, solution phase synthesis
represents one of the most effective and facile routes, in terms of energy consumption and equipment
costs, to realize the controllable synthesis of a wide range of nanostructures. Among these methods,
template-assisted electrodeposition is a popular way to obtain uniform and highly ordered nanowire
arrays [12,13]. The nucleation and growth kinetics of the nanowire arrays in one-dimensional confined
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geometry can be tuned by different experimental parameters, including template dimension, electrolyte
properties (pH value, composition, additive, and so on), reaction temperature, applied voltage, and the
current density [14–17]. In our previous work, we demonstrated that current density can influence
the growth direction and crystalline quality of electrodeposited semiconductor nanowire arrays,
and further change their photoluminescence properties [18,19].

Porous anodic aluminum oxide (AAO) is a widely used template due to the ideal uniform pore
distribution, tunable pore diameters, and facile fabrication process [20]. Combining AAO template with
electrodeposition has been studied for decades to synthesize different nanowire arrays; nevertheless,
recent years have seen further development in this area, regarding more mechanical understanding
in the pore formation [21], fine manipulation of pores, and thus nanostructure configurations [22],
syntheses of novel materials [23], and new applications [24]. All of these give new opportunities and
development to this routine preparation method for nanomaterials.

Although the preparation of Ni nanowire arrays by using template-assisted electrochemical
deposition method has been extensively studied [25–31], the control of growth orientation and
understanding the mechanism are challenged. In this work, we prepared Ni nanowire arrays by
using an AAO template-assisted electrodeposition method. The growth orientation of Ni nanowires
is successfully controlled under different current densities. The effect of growth orientation on the
magnetic properties of the nanowire arrays embedded in AAO template is studied in detail. This work
provides a possible route to understand the electrocrystallization behavior in a confined space, and thus
is essential to grow high-quality ferromagnetic nanowire arrays for potential applications in electronic
and spintronic devices.

2. Results and Discussion

Figure 1 shows the XRD patterns of the AAO template, as well as Ni nanowires embedded in
the AAO template that was prepared at setting current densities. The broad peak of the template
demonstrates the amorphous characteristic of Al2O3 (Figure 1a). At a lower current density of
1.2 mA/cm2 (Figure 1b), distinct diffraction peaks were observed, which are identified as (111), (200),
(220), and (311) crystalline planes of metal Ni with face-centred cubic phase (JCPDS No. 04-0850).
In addition, no other diffraction peaks could be found, suggesting a high phase purity of the Ni
nanowires. With the increase of current density to 1.5 mA/cm2 (Figure 1c) and 2.0 mA/cm2 (Figure 1d),
the relative intensity of the (111), (200), and (311) peaks decreased, while the relative intensity of
the (220) peak increased. At the current density of 2.5 mA/cm2 (Figure 1e), only the (220) peak
could be detected, suggesting the Ni nanowires are single crystal with [110] as the growth direction.
In addition, the average crystallite size can be estimated from Scherrer formula [32]. At current
densities of 1.2 mA/cm2 (Figure 1b) and 1.5 mA/cm2 (Figure 1c), the grain sizes calculated by using
(111) diffraction peak are ~28.9 nm and 22.9 nm, respectively. With the increasing of current densities,
the (220) peak becomes sharper, indicating an increased grain size (>100 nm) that related to (220) plane.
Such grain size changing also suggests a preferred orientation transition from [111] to [220].

Additional structure and morphology analysis are studied by electron microscopes. The SEM
morphology of a typical AAO template is shown in Figure 2. The pores are ordered and circular,
and the average pore diameter is ~30 nm (Figure 2a). In addition, the pores are perpendicular to
the surface of template, and the template thickness is around 35 µm (Figure 2b). Figure 2c displays
a plan-view SEM image of Ni nanowires prepared at a high current density (2.5 mA/cm2). Obviously,
large-scale ordered nanowires are obtained, and the nanowires grow perpendicular to the substrate.
The average size of nanowires is around 2 µm in length and 30 nm in diameter, respectively. In the
following studies, we adjusted the deposition time for the employed current densities to have the
nanowires possess the same length (~2 µm, the SEM images are not shown here).



Catalysts 2019, 9, 152 3 of 9
Catalysts 2018, 8, x FOR PEER REVIEW  3 of 9 

 

 
Figure 1. Typical XRD spectra of (a) AAO template, (b–e) Ni nanowire arrays prepared at various 
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Figure 1. Typical XRD spectra of (a) AAO template, (b–e) Ni nanowire arrays prepared at various
current densities (1.2 mA/cm2~2.5 mA/cm2). The Ni nanowire arrays that obtained at a low current
density (1.2 mA/cm2) has a polycrystalline structure, while the nanowire arrays grow along the [110]
orientation at a higher current density (2.5 mA/cm2).
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of Ni nanowire arrays (current density = 2.5 mA/cm2).

Typical TEM images of individual Ni nanowires are illustrated in Figure 3. It is obvious that
the nanowires show similar diameter of ~30 nm, confirming well-confined growth controlled by
the AAO pores. Electron diffraction patterns obtained by the selected area (SAED) clearly indicate
a transformation from the polycrystalline structure to single crystalline structure by increasing the
current density. In the range of 1.2–2.0 mA/cm2, the diffraction patterns show polycrystalline ring
characteristics. When the current density is 2.5 mA/cm2, the spotty pattern of single-crystalline
structure is observed. The TEM observations coincide with the above XRD analysis.
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that deposited under current densities of (a,e) 1.2 mA/cm2, (b,f) 1.5 mA/cm2, (c,g) 2.0 mA/cm2,
(d,h) 2.5 mA/cm2.

In our previous work, the nanowire growth in a porous template can be described
by a modified electrocrystallization model [19,33], of which the critical nucleus size
Nc can be expressed as: Nc = κn[(1 + $)Ehkl/zeη]n, where κn = λnexp(−nkr/h), λn is a constant that is
dependent on nucleation dimension (n), z and η are the effective electron number, the overpotential,
k and $ are parameters, r (radius) and h (height) are the geometry dimensions of 2D critical nucleus,
and Ehkl is the surface energy of (hkl) crystal face. The Ehkl value is related to bonding properties,
and it can also be modified by environmental conditions. For example, surface energy can be
decreased through selective absorption by different gases or ions [34,35]. For Ni crystals, the maximum
difference of the Ehkl values for (111), (200), and (220) surfaces is about 0.3–0.4 J/m2. Therefore,
when Ni nanowires are deposited under a low current density, (111), (200), and (220) surfaces form
simultaneously due to the similar surface energies, indicating a polycrystalline nature. Under the
high current density condition, the high overpotential facilitates the adsorption of hydrogen in the
electrolyte (4H3O+ + 4e− ↔ 4H2O + 2H2), especially on the facet with high surface energy (such as
(220) plane for Ni crystals) [36,37]. This ion adsorption can decrease the surface energy, making it
even lower than the pristine low-surface-energy facet (such as (111) plane). In the end, the growth
of Ni nanowire arrays is along the [110] direction [18,38]. We did not observe the nanowire arrays
with other orientations in the studied current density range; nevertheless, it is anticipated that other
orientations could be obtained by changing the surface energy order of different facets, which can
be achieved by selecting a suitable current density and surface absorbent. It should be mentioned
here that, besides current density, the pH value and temperature can also affect the microstructure
of the deposited nanowires [30]. In our experiments, there was no obvious change of the electrolyte
temperature. We did not measure the pH value during the deposition process, which, however,
is worth investigating in our future work.

We studied the magnetic properties of the Ni nanowires by using a VSM. A magnetic field (H = 5
kOe) is applied along two different directions, i.e., perpendicular (H⊥) or parallel (H//) to the nanowire
axis direction (Figure 4). The squareness (Mr/Ms) of the recorded hysteresis loops measured with
H// is much better than the measurements with H⊥. This clearly demonstrates the strong magnetic
anisotropy for the Ni nanowires. No matter the crystallinity of the nanowires, all samples indicate the
long axis of the Ni nanowire should be the easy axis for the magnetization, which can be attributed to
the 1D characteristic structure of the nanowires (shape anisotropy) [39–41].



Catalysts 2019, 9, 152 5 of 9
Catalysts 2018, 8, x FOR PEER REVIEW  5 of 9 

 

 
Figure 4. The magnetization hysteresis loops of the samples with the magnetic field applied (a) 
parallel (H//) and (b) perpendicular (H⊥) to the axis direction of the nanowire arrays prepared at 
various current densities (1.2 mA/cm2~2.5 mA/cm2). 

We studied the magnetic properties of the Ni nanowires by using a VSM. A magnetic field (H = 
5 kOe) is applied along two different directions, i.e., perpendicular (H⊥) or parallel (H//) to the 
nanowire axis direction (Figure 4). The squareness (Mr/Ms) of the recorded hysteresis loops 
measured with H// is much better than the measurements with H⊥. This clearly demonstrates the 
strong magnetic anisotropy for the Ni nanowires. No matter the crystallinity of the nanowires, all 
samples indicate the long axis of the Ni nanowire should be the easy axis for the magnetization, 
which can be attributed to the 1D characteristic structure of the nanowires (shape anisotropy) [39–
41]. 

The coercivity and Mr/Ms of the nanowire samples deposited at different current densities are 
summarized as shown in Figure 5. Both coercivity and squareness increased with parallel field by 
increasing the current density of the electrodeposition. Generally, magnetic anisotropy can be 
induced by crystal structures, orientation, and shape. Herein, the length of the four Ni nanowire 
arrays is similar (~2 μm), therefore, the possibility of crystal structures and shape anisotropy 
induced magnetic property change can be excluded. Additionally, the AAO template confines the 
nanowire diameter to ~30 nm, all Ni samples can be considered single-domain objects [42]. The 
sample at 1.2 mA/cm2 shows a significantly lower coercivity than other samples under the parallel 
magnetic field. This is caused by its poor crystallinity and small domain size which is confirmed by 
the XRD and SAED. The broad background and weak peak intensity indicate the nanowire contain 
amorphous states in its composition which can cause the deterioration of the coercivity. Although 
the sample at 1.5 mA/cm2 still shows polycrystalline nature of the materials, the spotty diffraction 
ring pattern of SAED indicates the crystallinity is improved, and the magnetic domain size is 
increased to enhance the coercivity [43,44]. When the current density is increased to 2.0 mA/cm2, the 
single-crystalline nature of the nanowire further improves the domain size and the coercivity. The 
sample at the 2.5 mA/cm2 shows the highest coercivity and the best squareness, indicating the high 

Figure 4. The magnetization hysteresis loops of the samples with the magnetic field applied (a) parallel
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current densities (1.2 mA/cm2~2.5 mA/cm2).

The coercivity and Mr/Ms of the nanowire samples deposited at different current densities
are summarized as shown in Figure 5. Both coercivity and squareness increased with parallel field
by increasing the current density of the electrodeposition. Generally, magnetic anisotropy can be
induced by crystal structures, orientation, and shape. Herein, the length of the four Ni nanowire
arrays is similar (~2 µm), therefore, the possibility of crystal structures and shape anisotropy induced
magnetic property change can be excluded. Additionally, the AAO template confines the nanowire
diameter to ~30 nm, all Ni samples can be considered single-domain objects [42]. The sample at
1.2 mA/cm2 shows a significantly lower coercivity than other samples under the parallel magnetic
field. This is caused by its poor crystallinity and small domain size which is confirmed by the XRD
and SAED. The broad background and weak peak intensity indicate the nanowire contain amorphous
states in its composition which can cause the deterioration of the coercivity. Although the sample at
1.5 mA/cm2 still shows polycrystalline nature of the materials, the spotty diffraction ring pattern of
SAED indicates the crystallinity is improved, and the magnetic domain size is increased to enhance the
coercivity [43,44]. When the current density is increased to 2.0 mA/cm2, the single-crystalline nature
of the nanowire further improves the domain size and the coercivity. The sample at the 2.5 mA/cm2

shows the highest coercivity and the best squareness, indicating the high oriented single-crystalline
sample improves ferromagnetic performance of the nanowire along the long axis.
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3. Experimental

3.1. Fabrication of AAO Template

The AAO templates were fabricated by a anodization method at 15 ◦C [45,46]. Firstly,
pure aluminum foil (99.99%, with a thickness ~0.5 mm) was cleaned in acetone solution and then
annealed in vacuum condition at 500 ◦C for 2 h. The anodization was firstly operated under a constant
voltage of 30 V in oxalic acid solution (0.4 M) for 9 h. The alumina layer produced in the anodization
was then removed, and the aluminum plate was anodized for 14 h. After the anodization, we utilized
a solution of SnCl2 (0.05 M) to clear away the central aluminum layer. To remove the barrier layer
on the bottom side, additional etching was employed by using a phosphoric acid solution (5 wt%) as
etchant. Finally, copper film (50 nm in thickness) was sputtered onto one side of the AAO template.

3.2. Electrodeposition of Ni Nanowire Arrays

Ni nanowire arrays were prepared by a constant-current electrodeposition method in a standard
two-electrode system. A pure Ni plate (99.9%) and AAO template with copper film were served as
the counter and working electrodes, respectively. The electrolyte contained a mixture of nickel sulfate
hexahydrate (NiSO4·6H2O, 2.0 M) and boric acid (H3BO3, 0.6 M). The current density was set between
1.2 mA/cm2 and 2.5 mA/cm2. All the depositions were performed at room temperature.

3.3. Materials Characterization

The crystallographic information and phase structure were analyzed by employing an X-ray
diffractometer with Cu-Kα radiation (XRD, D/max-2500/PC, wavelength 1.5418 Å, Rigaku, Tokyo,
Japan). The morphology and microstructure were characterizated by a scanning electron microscope
(SEM, Merlin, 5 keV, Zeiss, Oberkochen, Germany.) and a transmission electron microscope (TEM,
JEM 2010, 200 keV, JEOL, Tokyo, Japan). The magnetic properties were measured with a vibrating
sample magnetometer (VSM, Model 7407, magnetic field 5 kOe, LakeShore, Westerville, OH, USA) at
room temperature.

4. Conclusions

We have demonstrated the preparation of orientation controlled Ni nanowire arrays by tuning
the electrodeposited current density. The single-crystalline nanowire grown at 2.5 mA/cm2 shows
a favourite orientation along [110] direction. The mechanism can be understood by a modified
electrocrystallization model. The measurement of magnetic properties indicates the single-crystallinity
improved the coercivity and squareness of the Ni nanowires. Our investigation is essential to
understand the growth of ferromagnetic nanowires and to explore potential applications in electronic,
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spintronic devices, and catalysts. Moreover, the present strategy can also be extended to prepare other
nanowire arrays, including metal, alloy, and semiconductors, with controlled growth direction in
confined space.
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