1,142 research outputs found
SENP1 promotes hypoxia-induced cancer stemness by HIF-1α deSUMOylation and SENP1/HIF-1α positive feedback loop
published_or_final_versio
Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma
Copyright @ 2013 Macmillan Publishers Limited. This is the author's accepted manuscript. The final published article is available from the link below.Regulation of cell survival is a key part of the pathogenesis of multiple myeloma (MM). Jun N-terminal kinase (JNK) signaling has been implicated in MM pathogenesis, but its function is unclear. To elucidate the role of JNK in MM, we evaluated the specific functions of the two major JNK proteins, JNK1 and JNK2. We show here that JNK2 is constitutively activated in a panel of MM cell lines and primary tumors. Using loss-of-function studies, we demonstrate that JNK2 is required for the survival of myeloma cells and constitutively suppresses JNK1-mediated apoptosis by affecting expression of poly(ADP-ribose) polymerase (PARP)14, a key regulator of B-cell survival. Strikingly, we found that PARP14 is highly expressed in myeloma plasma cells and associated with disease progression and poor survival. Overexpression of PARP14 completely rescued myeloma cells from apoptosis induced by JNK2 knockdown, indicating that PARP14 is critically involved in JNK2-dependent survival. Mechanistically, PARP14 was found to promote the survival of myeloma cells by binding and inhibiting JNK1. Moreover, inhibition of PARP14 enhances the sensitization of MM cells to anti-myeloma agents. Our findings reveal a novel regulatory pathway in myeloma cells through which JNK2 signals cell survival via PARP14, and identify PARP14 as a potential therapeutic target in myeloma.Kay Kendall Leukemia Fund, NIH, Cancer Research UK, Italian Association for Cancer Research and the Foundation for Liver Research
General Analysis of Antideuteron Searches for Dark Matter
Low energy cosmic ray antideuterons provide a unique low background channel
for indirect detection of dark matter. We compute the cosmic ray flux of
antideuterons from hadronic annihilations of dark matter for various Standard
Model final states and determine the mass reach of two future experiments
(AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron
detection over current bounds. We consider generic models of scalar, fermion,
and massive vector bosons as thermal dark matter, describe their basic features
relevant to direct and indirect detection, and discuss the implications of
direct detection bounds on models of dark matter as a thermal relic. We also
consider specific dark matter candidates and assess their potential for
detection via antideuterons from their hadronic annihilation channels. Since
the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we
find that antideuterons can be a good indirect detection channel for a variety
of thermal relic electroweak scale dark matter candidates, even when the rate
for direct detection is highly suppressed.Comment: 44 pages, 15 Figure
How are gender equality and human rights interventions included in sexual and reproductive health programmes and policies: A systematic review of existing research foci and gaps
The importance of promoting gender equality and human rights in sexual and reproductive health (SRH) programmes and policies has been affirmed in numerous international and regional agreements, most recently the 2030 Agenda for Sustainable Development. Given the critical role of research to determine what works, we aimed to identify research gaps as part of a broader priority setting exercise on integrating gender equality and human rights approaches in SRH programmes and policies. A systematic literature review of reviews was conducted to examine the question: what do we know about how research in the context of SRH programmes and policies has addressed gender equality and human rights and what are the current gaps in research. We searched three databases for reviews that addressed the research question, were published between 1994-2014, and met methodological standards for systematic reviews, qualitative meta-syntheses and other reviews of relevance to the research question. Additional grey literature was identified based on expert input. Articles were appraised by the primary author and examined by an expert panel. An abstraction and thematic analysis process was used to synthesize findings. Of the 3,073 abstracts identified, 56 articles were reviewed in full and 23 were included along with 10 from the grey literature. The majority focused on interventions addressing gender inequalities; very few reviews explicitly included human rights based interventions. Across both topics, weak study designs and use of intermediate outcome measures limited evidence quality. Further, there was limited evidence on interventions that addressed marginalized groups. Better quality studies, longer-term indicators, and measurement of unintended consequences are needed to better understand the impact of these types of interventions on SRH outcomes. Further efforts are needed to cover research on gender equality and human rights issues as they pertain to a broader set of SRH topics and populations.Scopu
A half-site multimeric enzyme achieves its cooperativity without conformational changes
Cooperativity is a feature many multimeric proteins use to control activity. Here we show that the bacterial heptose isomerase GmhA displays homotropic positive and negative cooperativity among its four protomers. Most similar proteins achieve this through conformational changes: GmhA instead employs a delicate network of hydrogen bonds, and couples pairs of active sites controlled by a unique water channel. This network apparently raises the Lewis acidity of the catalytic zinc, thus increasing the activity at one active site at the cost of preventing substrate from adopting a reactive conformation at the paired negatively cooperative site – a “half-site” behavior. Our study establishes the principle that multimeric enzymes can exploit this cooperativity without conformational changes to maximize their catalytic power and control. More broadly, this subtlety by which enzymes regulate functions could be used to explore new inhibitor design strategies
ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation
Selective treatments for myocardial infarction (MI) induced cardiac fibrosis are lacking. In this study, we focus on the therapeutic potential of a synthetic cardio-protective agent named ZYZ-168 towards MI-induced cardiac fibrosis and try to reveal the underlying mechanism. ZYZ-168 was administered to rats with coronary artery ligation over a period of six weeks. Ecocardiography and Masson staining showed that ZYZ-168 substantially improved cardiac function and reduced interstitial fibrosis. The expression of α–smooth muscle actin (α-SMA) and Collagen I were reduced as was the activity of matrix metalloproteinase 9 (MMP-9). These were related with decreased phosphorylation of ERK1/2 and expression of Rho-associated coiled-coil containing protein kinase 1 (ROCK1). In cardiac fibroblasts stimulated with TGF-β1, phenotypic switches of cardiac fibroblasts to myofibroblasts were observed. Inhibition of ERK1/2 phosphorylation or knockdown of ROCK1 expectedly reduced TGF-β1 induced fibrotic responses. ZYZ-168 appeared to inhibit the fibrotic responses in a concentration dependent manner, in part via a decrease in ROCK 1 expression through inhibition of the phosphorylation status of ERK1/2. For inhibition of ERK1/2 phosphorylation with a specific inhibitor reduced the activation of ROCK1. Considering its anti-apoptosis activity in MI, ZYZ-168 may be a potential drug candidate for treatment of MI-induced cardiac fibrosis
Mechanistic model of natural killer cell proliferative response to IL-15 receptor stimulation
Natural killer (NK) cells are innate lymphocytes that provide early host defense against intracellular pathogens, such as viruses. Although NK cell development, homeostasis, and proliferation are regulated by IL-15, the influence of IL-15 receptor (IL-15R)-mediated signaling at the cellular level has not been quantitatively characterized. We developed a mathematical model to analyze the kinetic interactions that control the formation and localization of IL-15/IL-15R complexes. Our computational results demonstrated that IL-15/IL-15R complexes on the cell surface were a key determinant of the magnitude of the IL-15 proliferative signal and that IL-15R occupancy functioned as an effective surrogate measure of receptor signaling. Ligand binding and receptor internalization modulated IL-15R occupancy. Our work supports the hypothesis that the total number and duration of IL-15/IL-15R complexes on the cell surface crosses a quantitative threshold prior to the initiation of NK cell division. Furthermore, our model predicted that the upregulation of IL-15Rα on NK cells substantially increased IL-15R complex formation and accelerated the expansion of dividing NK cells with the greatest impact at low IL-15 concentrations. Model predictions of the threshold requirement for NK cell recruitment to the cell cycle and the subsequent exponential proliferation correlated well with experimental data. In summary, our modeling analysis provides quantitative insight into the regulation of NK cell proliferation at the receptor level and provides a framework for the development of IL-15 based immunotherapies to modulate NK cell proliferation
Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture.
The design of effective CO2 capture materials is an ongoing challenge. Here we report a concept to overcome current limitations associated with both liquid and solid CO2 capture materials by exploiting a solid-liquid hybrid superparticle (SLHSP). The fabrication of SLHSP involves assembly of hydrophobic silica nanoparticles on the liquid marble surface, and co-assembly of hydrophilic silica nanoparticles and tetraethylenepentamine within the interior of the liquid marble. The strong interfacial adsorption force and the strong interactions between amine and silica are identified to be key elements for high robustness. The developed SLHSPs exhibit excellent CO2 sorption capacity, high sorption rate, long-term stability and reduced amine loss in industrially preferred fixed bed setups. The outstanding performances are attributed to the unique structure which hierarchically organizes the liquid and solid at microscales
Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)
Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm
Growth of GaSb and GaInAsSb layers for thermophotovoltaic cells by liquid phase epitaxy
GaSb based cells as receivers in thermophotovoltaic system have attracted great interest and been extensively studied in the recent 15 years. Although nowadays the manufacturing technologies have made a great progress, there are still some details need to make a further study. In this paper, undoped and doped GaSb layers were grown on n-GaSb (100) substrates from both Ga-rich and Sb-rich solutions using liquid phase epitaxy (LPE) technique. The nominal segregation coefficients k of intentional doped Zn were 1.4 and 8.8 determined from the two kinds of GaSb epitaxial layers. Additionally, compared with growing from Ga-rich solutions, the growing processes from Sb-rich solutions were much easier to control and the surface morphologies of epitaxial layers were smoother. Furthermore, in order to broaden the absorbing edge, Ga 1-xInxAsySb1-y quaternary alloys were grown on both GaSb and InAs substrates from In-rich solutions, under different temperature respectively
- …
