2,410 research outputs found
A computational study of photoisomerization in Al3O3- clusters
Ab initio calculations are employed to understand the photoisomerization process in small Al3O3- clusters. This process is the first example of a photoinduced isomerization observed in an anion cluster gas-phase system. Potential energy surfaces for the ground state and the excited state (S1 and T1) are explored by means of B3LYP, MP2, CI-singles, and CASSCF methods. We demonstrate that the isomerization process occurs between the global minimum singlet state Book structure (C2v,1A1) and the triplet state Ring structure (C2v,3B2). The calculated vertical excitation energy is 3.62 eV at the CASSCF level of approximation, in good agreement with the experimental value (3.49 eV). A nonplanar conical intersection, which hosts the intersystem crossing between the S1 and T1 surfaces is identified at the region of around R(1,6)=2.4 Å. Beyond the experimental results, we predict, that this isomerization is reversible upon absorption of a phonon with energy of 1.92 eV. Our results describe a unique system, whose structure depends on its spin multiplicity; it exists as the Book structure on singlet states and as the Ring structure on triplet states
Screening of seven microsatellite markers for litter size in Xinong Saanen dairy goat
Seven microsatellite markers OarAE101, BM1329, OarHH55, BM143, BMS2508, OarAE129 and OarFCB11 closely associated with high reproduction trait in sheep were analyzed for polymorphisms in Xinong Saanen dairy goat. The results indicated that there were high genetic polymorphisms at six microsatellite loci. The number of effective alleles (Ne), polymorphism information content (PIC) and average heterozygosity (He) were the highest at OarFCB11 and the lowest at OarAE129 in Xinong Saanen dairy goat. The analysis of the effect of the six polymorphisms microsatellite loci on the litter size of Xinong Saanen dairy goat indicated that these polymorphisms microsatellite loci had positive effect on the litter size.Key words: Microsatellite markers, Xinong Saanen dairy goat, genetic polymorphism, litter size
Decentralized Estimation over Orthogonal Multiple-access Fading Channels in Wireless Sensor Networks - Optimal and Suboptimal Estimators
Optimal and suboptimal decentralized estimators in wireless sensor networks
(WSNs) over orthogonal multiple-access fading channels are studied in this
paper. Considering multiple-bit quantization before digital transmission, we
develop maximum likelihood estimators (MLEs) with both known and unknown
channel state information (CSI). When training symbols are available, we derive
a MLE that is a special case of the MLE with unknown CSI. It implicitly uses
the training symbols to estimate the channel coefficients and exploits the
estimated CSI in an optimal way. To reduce the computational complexity, we
propose suboptimal estimators. These estimators exploit both signal and data
level redundant information to improve the estimation performance. The proposed
MLEs reduce to traditional fusion based or diversity based estimators when
communications or observations are perfect. By introducing a general message
function, the proposed estimators can be applied when various analog or digital
transmission schemes are used. The simulations show that the estimators using
digital communications with multiple-bit quantization outperform the estimator
using analog-and-forwarding transmission in fading channels. When considering
the total bandwidth and energy constraints, the MLE using multiple-bit
quantization is superior to that using binary quantization at medium and high
observation signal-to-noise ratio levels
Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3
Topological insulators represent a new state of quantum matter attractive to
both fundamental physics and technological applications such as spintronics and
quantum information processing. In a topological insulator, the bulk energy gap
is traversed by spin-momentum locked surface states forming an odd number of
surface bands that possesses unique electronic properties. However, transport
measurements have often been dominated by residual bulk carriers from crystal
defects or environmental doping which mask the topological surface
contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological
insulator system to manipulate bulk conductivity by varying the Bi/Sb
composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as
topological insulators for the entire composition range by angle resolved
photoemission spectroscopy (ARPES) measurements and ab initio calculations.
Additionally, we observe a clear ambipolar gating effect similar to that
observed in graphene using nanoplates of (BixSb1-x)2Te3 in
field-effect-transistor (FET) devices. The manipulation of carrier type and
concentration in topological insulator nanostructures demonstrated in this
study paves the way for implementation of topological insulators in
nanoelectronics and spintronics.Comment: 7 pages, 4 figure
Polymeric additives to enhance the functional properties of calcium phosphate cements
The vast majority of materials used in bone tissue engineering and regenerative medicine are based on calcium phosphates due to their similarity with the mineral phase of natural bone. Among them, calcium phosphate cements, which are composed of a powder and a liquid that are mixed to obtain a moldable paste, are widely used. These calcium phosphate cement pastes can be injected using minimally invasive surgery and adapt to the shape of the defect, resulting in an entangled network of calcium phosphate crystals. Adding an organic phase to the calcium phosphate cement formulation is a very powerful strategy to enhance some of the properties of these materials. Adding some water-soluble biocompatible polymers in the calcium phosphate cement liquid or powder phase improves physicochemical and mechanical properties, such as injectability, cohesion, and toughness. Moreover, adding specific polymers can enhance the biological response and the resorption rate of the material. The goal of this study is to overview the most relevant advances in this field, focusing on the different types of polymers that have been used to enhance specific calcium phosphate cement properties
Bistability in Apoptosis by Receptor Clustering
Apoptosis is a highly regulated cell death mechanism involved in many
physiological processes. A key component of extrinsically activated apoptosis
is the death receptor Fas, which, on binding to its cognate ligand FasL,
oligomerize to form the death-inducing signaling complex. Motivated by recent
experimental data, we propose a mathematical model of death ligand-receptor
dynamics where FasL acts as a clustering agent for Fas, which form locally
stable signaling platforms through proximity-induced receptor interactions.
Significantly, the model exhibits hysteresis, providing an upstream mechanism
for bistability and robustness. At low receptor concentrations, the bistability
is contingent on the trimerism of FasL. Moreover, irreversible bistability,
representing a committed cell death decision, emerges at high concentrations,
which may be achieved through receptor pre-association or localization onto
membrane lipid rafts. Thus, our model provides a novel theory for these
observed biological phenomena within the unified context of bistability.
Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our
model also suggests a mechanism by which cells may function as bistable
life/death switches independently of any such dynamics in their downstream
components. Our results highlight the role of death receptors in deciding cell
fate and add to the signal processing capabilities attributed to receptor
clustering.Comment: Accepted by PLoS Comput Bio
A map of human cancer signaling
We conducted a comprehensive analysis of a manually curated human signaling network containing 1634 nodes and 5089 signaling regulatory relations by integrating cancer-associated genetically and epigenetically altered genes. We find that cancer mutated genes are enriched in positive signaling regulatory loops, whereas the cancer-associated methylated genes are enriched in negative signaling regulatory loops. We further characterized an overall picture of the cancer-signaling architectural and functional organization. From the network, we extracted an oncogene-signaling map, which contains 326 nodes, 892 links and the interconnections of mutated and methylated genes. The map can be decomposed into 12 topological regions or oncogene-signaling blocks, including a few ‘oncogene-signaling-dependent blocks' in which frequently used oncogene-signaling events are enriched. One such block, in which the genes are highly mutated and methylated, appears in most tumors and thus plays a central role in cancer signaling. Functional collaborations between two oncogene-signaling-dependent blocks occur in most tumors, although breast and lung tumors exhibit more complex collaborative patterns between multiple blocks than other cancer types. Benchmarking two data sets derived from systematic screening of mutations in tumors further reinforced our findings that, although the mutations are tremendously diverse and complex at the gene level, clear patterns of oncogene-signaling collaborations emerge recurrently at the network level. Finally, the mutated genes in the network could be used to discover novel cancer-associated genes and biomarkers
Generalized linear model for interval mapping of quantitative trait loci
We developed a generalized linear model of QTL mapping for discrete traits in line crossing experiments. Parameter estimation was achieved using two different algorithms, a mixture model-based EM (expectation–maximization) algorithm and a GEE (generalized estimating equation) algorithm under a heterogeneous residual variance model. The methods were developed using ordinal data, binary data, binomial data and Poisson data as examples. Applications of the methods to simulated as well as real data are presented. The two different algorithms were compared in the data analyses. In most situations, the two algorithms were indistinguishable, but when large QTL are located in large marker intervals, the mixture model-based EM algorithm can fail to converge to the correct solutions. Both algorithms were coded in C++ and interfaced with SAS as a user-defined SAS procedure called PROC QTL
Spatial contrast sensitivity in adolescents with autism spectrum disorders
Adolescents with autism spectrum disorders (ASD) and typically developing (TD) controls underwent a rigorous psychophysical assessment that measured contrast sensitivity to seven spatial frequencies (0.5-20 cycles/degree). A contrast sensitivity function (CSF) was then fitted for each participant, from which four measures were obtained: visual acuity, peak spatial frequency, peak contrast sensitivity, and contrast sensitivity at a low spatial frequency. There were no group differences on any of the four CSF measures, indicating no differential spatial frequency processing in ASD. Although it has been suggested that detail-oriented visual perception in individuals with ASD may be a result of differential sensitivities to low versus high spatial frequencies, the current study finds no evidence to support this hypothesis
- …