6,750 research outputs found
Enhancement of Transition Temperature in FexSe0.5Te0.5 Film via Iron Vacancies
The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on
superconductivity and electronic properties have been studied. A significant
enhancement of the superconducting transition temperature (TC) up to 21K was
observed in the most Fe deficient film (x=0.8). Based on the observed and
simulated structural variation results, there is a high possibility that Fe
vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows
a strong relationship with the lattice strain effect induced by Fe vacancies.
Importantly, the presence of Fe vacancies alters the charge carrier population
by introducing electron charge carriers, with the Fe deficient film showing
more metallic behavior than the defect-free film. Our study provides a means to
enhance the superconductivity and tune the charge carriers via Fe vacancy, with
no reliance on chemical doping.Comment: 15 pages, 4 figure
Direct reduction and extraction of iron from nickel smelting slag coupling of preparation of cementing materials using gangue composition
Aiming at the properties of Fe and SiO2 in nickel slag, the process of preparing DRI by direct reduction nickel slag from coal base was proposed, and the component of gangue is used as raw material to prepare C2S(belite) and C3S(alite), which is a comprehensive utilization of nickel slag. The reduction reaction of iron coupling of the reaction of cementitious materials was realized through thermodynamic calculation and experiment. The reduction roasting products of nickel slag with iron, C3S and C2S as the main phase were obtained by reasonable batching and temperature control technology of reduction roasting reaction
A unified mechanism for intron and exon definition and back-splicing.
The molecular mechanisms of exon definition and back-splicing are fundamental unanswered questions in pre-mRNA splicing. Here we report cryo-electron microscopy structures of the yeast spliceosomal E complex assembled on introns, providing a view of the earliest event in the splicing cycle that commits pre-mRNAs to splicing. The E complex architecture suggests that the same spliceosome can assemble across an exon, and that it either remodels to span an intron for canonical linear splicing (typically on short exons) or catalyses back-splicing to generate circular RNA (on long exons). The model is supported by our experiments, which show that an E complex assembled on the middle exon of yeast EFM5 or HMRA1 can be chased into circular RNA when the exon is sufficiently long. This simple model unifies intron definition, exon definition, and back-splicing through the same spliceosome in all eukaryotes and should inspire experiments in many other systems to understand the mechanism and regulation of these processes
Effects of the sintering atmosphere on the superconductivity of SmFeAsO1-xFx compounds
A series of SmFeAsO1-xFx samples were sintered in quartz tubes filled with
air of different pressures. The effects of the sintering atmosphere on the
superconductivity were systematically investigated. The SmFeAsO1-xFx system
maintains a transition temperature (Tc) near 50 K until the concentration of
oxygen in quartz tubes increases to a certain threshold, after which Tc
decreases dramatically. Fluorine losses, whether due to vaporization, reactions
with starting materials, and reactions with oxygen, proved to be detrimental to
the superconductivity of this material. The deleterious effects of the oxygen
in the sintering atmosphere were also discussed in detail.Comment: 9 pages, 5 figure
Cadmium, lead, and arsenic contamination in paddy soils of a mining area and their exposure effects on human HEPG2 and keratinocyte cell-lines
A mining district in south China shows significant metal(loid) contamination in paddy fields. In the soils, average Pb, Cd and As concentrations were 460.1, 11.7 and 35.1 mg kg−1 respectively, which were higher than the environmental quality standard for agricultural soils in China (GB15618-1995) and UK Clea Soil Guideline Value. The average contents of Pb, Cd and As in rice were 5.24, 1.1 and 0.7 mg kg−1 respectively, which were about 25, 4.5 or 2.5 times greater than the limit values of the maximum safe contaminant concentration standard in food of China (GB 2762-2012), and about 25, 10 or 1 times greater than the limit values of FAO/WHO standard. The elevated contents of Pb, Cd and As detected in soils around the factories, indicated that their spatial distribution was influenced by anthropogenic activity, while greater concentrations of Cd in rice appeared in the northwest region of the factories, indicating that the spatial distribution of heavy metals was also affected by natural factors. As human exposure around mining districts is mainly through oral intake of food and dermal contact, the effects of these metals on the viability and MT protein of HepG2 and KERTr cells were investigated. The cell viability decreased with increasing metal concentrations. Co-exposure to heavy metals (Pb+Cd) increased the metals (Pb or Cd)-mediated MT protein induction in both human HepG2 and KERTr cells. Increased levels of MT protein will lead to greater risk of carcinogenic manifestations, and it is likely that chronic exposure to metals may increase the risk to human health. Nevertheless, when co-exposure to two or more metals occur (such as As+Pb), they may have an antagonistic effect thus reducing the toxic effects of each other
Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China
Atmospheric ammonia (NH 3) has great environmental implications due to its important role in ecosystem and global nitrogen cycle, as well as contribution to secondary particle formation. Here, we report long-term continuous measurements of NH 3 at different locations (i.e. urban, industrial and rural) in Shanghai, China, which provide an unprecedented portrait of temporal and spatial characteristics of atmospheric NH 3 in and around this megacity. In addition to point emission sources, air masses originated from or that have passed over ammonia rich areas, e.g. rural and industrial sites, increase the observed NH 3 concentrations inside the urban area of Shanghai. Remarkable high-frequency NH 3 variations were measured at the industrial site, indicating instantaneous nearby industrial emission peaks. Additionally, we observed strong positive exponential correlations between NH 4 + /(NH 4 + +NH 3) and sulfate-nitrate-ammonium (SNA) aerosols, PM 2.5 mass concentrations, implying a considerable contribution of gas-to-particle conversion of ammonia to SNA aerosol formation. Lower temperature and higher humidity conditions were found to favor the conversion of gaseous ammonia to particle ammonium, particularly in autumn. Although NH 3 is currently not included in China s emission control policies of air pollution precursors, our results highlight the urgency and importance of monitoring gaseous ammonia and improving its emission inventory in and around Shanghai.Peer Reviewe
- …