8 research outputs found

    Blocking Zika virus vertical transmission.

    Get PDF
    The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity

    IGF1 neuronal response in the absence of MECP2 is dependent on TRalpha 3

    No full text
    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder in which the MECP2 (methyl CpG-binding protein 2) gene is mutated. Recent studies showed that RTT-derived neurons have many cellular deficits when compared to control, such as: less synapses, lower dendritic arborization and reduced spine density. Interestingly, treatment of RTT-derived neurons with Insulin-like Growth Factor 1 (IGF1) could rescue some of these cellular phenotypes. Given the critical role of IGF1 during neurodevelopment, the present study used human induced pluripotent stem cells (iPSCs) from RTT and control individuals to investigate the gene expression profile of IGF1 and IGF1R on different developmental stages of differentiation. We found that the thyroid hormone receptor (TRalpha 3) has a differential expression profile. Thyroid hormone is critical for normal brain development. Our results showed that there is a possible link between IGF1/IGF1R and the TRalpha 3 and that over expression of IGF1R in RTT cells may be the cause of neurites improvement in neural RTT-derived neurons.California Institute for Regenerative Medicine (CIRM)National Institutes of Health (NIH)NARSAD Independent Investigator GrantCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, Brasilia, Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP, Sao Paulo, Brazil)Univ Fed Sao Paulo, UNIFESP EPM, Dept Med, Lab Endocrinol & Translat Med, Sao Paulo, SP, BrazilUniv Calif San Diego, Sch Med, Dept Cellular & Mol Med, Rady Childrens Hosp San Diego,Dept Pediat,Stem Ce, La Jolla, CA 92093 USAUniv Fed Sao Paulo, UNIFESP EPM, Neurosci Lab, Dept Neurol & Neurosurg, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biol Sci, Diadema, SP, BrazilUniv Fed Sao Paulo, UNIFESP EPM, Dept Med, Lab Endocrinol & Translat Med, Sao Paulo, SP, Brazil|Univ Fed Sao Paulo, UNIFESP EPM, Neurosci Lab, Dept Neurol & Neurosurg, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biol Sci, Diadema, SP, BrazilCIRM: TR2-01814, TR4-06747NIH: R01MH094753NIH: R01MH103134NIH: U19MH107367CAPES: 18952-12-7FAPESP: 2014/08049-1Web of Scienc

    NS1 codon usage adaptation to humans in pandemic Zika virus

    Get PDF
    <div><p> BACKGROUND Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. OBJECTIVES To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. FINDINGS The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. MAIN CONCLUSIONS Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.</p></div

    The Brazilian Zika virus strain causes birth defects in experimental models

    No full text
    Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (Family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys(1). Until the 20(th) century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the island of Yap in Micronesia(2). Patients experienced fever, skin rash, arthralgia and conjunctivitis(2). From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America(3). In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome(4,5). Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKV(BR)) strain causes birth defects remains missing(6). Here we demonstrate that the ZIKV(BR) infects fetuses, causing intra-uterine growth restriction (IUGR), including signs of microcephaly in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. Finally, we observed that the infection of human brain organoids resulted in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKV(BR) crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKV(BR) outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKV(BR) in human neurodevelopment
    corecore