53 research outputs found

    Which laboratory technique is used for the blood sodium analysis in clinical research? A systematic review

    Get PDF
    Abstract Background Circulating sodium is analyzed by flame spectrometry and indirect or direct potentiometry. The differences between estimates returned by the three techniques are often relevant. It is unknown whether peer-reviewed international publications focusing on this parameter provide information about the technique. Objectives of the study were to ascertain if information about the employed technique is provided. Content A search in the National Library of Medicine for articles whose title contains "hyponatr[a]emia" was performed. We restricted the search to clinical reports including 10 or more humans published in the 2013–2015 and 2017–2019 periods. Authors of papers not reporting the technique were contacted to obtain this information. The study design and journal quartile ranking of each article were also evaluated. Summary For the final analysis, we included 361 articles (2013–2015, n=169; 2017–2019, n=192). Information about the laboratory technique was given in 61(17%) articles. Thanks to our inquiry, we collected this information for 116(32%) further reports. Indirect potentiometry was the most frequently used technique, followed by direct potentiometry. Spectrometry was used in a small minority of studies. Study design, journal ranking and study period did not modulate the mentioned frequency. Outlook Most articles focusing on hyponatremia do not provide information on the laboratory technique. This parameter is nowadays analyzed by indirect or, less frequently, direct potentiometry. The figures are similar for high and low impact factor journals and for the 2013–2015 and the 2017–2019 periods. Many authors, reviewers and editors likely assume that the results of this parameter are not influenced by the technique

    Functional and clinical implications of genetic structure in 1686 Italian exomes

    Get PDF
    To reconstruct the phenotypical and clinical implications of the Italian genetic structure, we thoroughly analyzed a whole-exome sequencing data set comprised of 1686 healthy Italian individuals. We found six previously unreported variants with remarkable frequency differences between Northern and Southern Italy in the HERC2, OR52R1, ADH1B, and THBS4 genes. We reported 36 clinically relevant variants (submitted as pathogenic, risk factors, or drug response in ClinVar) with significant frequency differences between Italy and Europe. We then explored putatively pathogenic variants in the Italian exome. On average, our Italian individuals carried 16.6 protein-truncating variants (PTVs), with 2.5% of the population having a PTV in one of the 59 American College of Medical Genetics (ACMG) actionable genes. Lastly, we looked for PTVs that are likely to cause Mendelian diseases. We found four heterozygous PTVs in haploinsufficient genes (KAT6A, PTCH1, and STXBP1) and three homozygous PTVs in genes causing recessive diseases (DPYD, FLG, and PYGM). Comparing frequencies from our data set to other public databases, like gnomAD, we showed the importance of population-specific databases for a more accurate assessment of variant pathogenicity. For this reason, we made aggregated frequencies from our data set publicly available as a tool for both clinicians and researchers (http://nigdb.cineca.it; NIG-ExIT)

    Dna methylation of fkbp5 as predictor of overall survival in malignant pleural mesothelioma

    Get PDF
    Malignant pleural mesothelioma (MPM) is an aggressive tumor with median survival of 12 months and limited effective treatments. The scope of this study was to study the relationship between blood DNA methylation (DNAm) and overall survival (OS) aiming at a noninvasive prognostic test. We investigated a cohort of 159 incident asbestos exposed MPM cases enrolled in an Italian area with high incidence of mesothelioma. Considering 12 months as a cut-off for OS, epigenome-wide association study (EWAS) revealed statistically significant (p value = 7.7 7 10 129 ) OS-related differential methylation of a single-CpG (cg03546163), located in the 5\u2032 UTR region of the FKBP5 gene. This is an independent marker of prognosis in MPM patients with a better performance than traditional inflammation-based scores such as lymphocyte-to-monocyte ratio (LMR). Cases with DNAm < 0.45 at the cg03546163 had significantly poor survival compared with those showing DNAm 65 0.45 (mean: 243 versus 534 days; p value< 0.001). Epigenetic changes at the FKBP5 gene were robustly associated with OS in MPM cases. Our results showed that blood DNA methylation levels could be promising and dynamic prognostic biomarkers in MPM

    New DNA methylation signals for malignant pleural mesothelioma risk assessment

    Get PDF
    SIMPLE SUMMARY: Our study investigated DNA methylation differences in easily accessible white blood cells (WBCs) between malignant pleural mesothelioma (MPM) cases and asbestos-exposed cancer-free controls. A multiple regression model highlighted that the methylation level of two single CpGs (cg03546163 in FKBP5 and cg06633438 in MLLT1) are independent MPM markers. The epigenetic changes at the FKBP5 and MLLT1 genes were robustly associated with MPM in asbestos-exposed subjects. Interaction analyses showed that MPM cases and cancer-free controls showed DNAm differences which may be linked to asbestos exposure. ABSTRACT: Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm. Patients are usually diagnosed when current treatments have limited benefits, highlighting the need for noninvasive tests aimed at an MPM risk assessment tool that might improve life expectancy. Three hundred asbestos-exposed subjects (163 MPM cases and 137 cancer-free controls), from the same geographical region in Italy, were recruited. The evaluation of asbestos exposure was conducted considering the frequency, the duration and the intensity of occupational, environmental and domestic exposure. A genome-wide methylation array was performed to identify novel blood DNA methylation (DNAm) markers of MPM. Multiple regression analyses adjusting for potential confounding factors and interaction between asbestos exposure and DNAm on the MPM odds ratio were applied. Epigenome-wide analysis (EWAS) revealed 12 single-CpGs associated with the disease. Two of these showed high statistical power (99%) and effect size (>0.05) after false discovery rate (FDR) multiple comparison corrections: (i) cg03546163 in FKBP5, significantly hypomethylated in cases (Mean Difference in beta values (MD) = −0.09, 95% CI = −0.12|−0.06, p = 1.2 × 10(−7)), and (ii) cg06633438 in MLLT1, statistically hypermethylated in cases (MD = 0.07, 95% CI = 0.04|0.10, p = 1.0 × 10(−6)). Based on the interaction analysis, asbestos exposure and epigenetic profile together may improve MPM risk assessment. Above-median asbestos exposure and hypomethylation of cg03546163 in FKBP5 (OR = 20.84, 95% CI = 8.71|53.96, p = 5.5 × 10(−11)) and hypermethylation of cg06633438 in MLLT1 (OR = 11.71, 95% CI = 4.97|29.64, p = 5.9 × 10(−8)) genes compared to below-median asbestos exposure and hyper/hypomethylation of single-CpG DNAm, respectively. Receiver Operation Characteristics (ROC) for Case-Control Discrimination showed a significant increase in MPM discrimination when DNAm information was added in the model (baseline model, BM: asbestos exposure, age, gender and white blood cells); area under the curve, AUC = 0.75; BM + cg03546163 at FKBP5. AUC = 0.89, 2.1 × 10(−7); BM + cg06633438 at MLLT1. AUC = 0.89, 6.3 × 10(−8). Validation and replication procedures, considering independent sample size and a different DNAm analysis technique, confirmed the observed associations. Our results suggest the potential application of DNAm profiles in blood to develop noninvasive tests for MPM risk assessment in asbestos-exposed subjects

    Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation

    Get PDF
    Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15–17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype–phenotype map than previously anticipated
    • …
    corecore