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Simple Summary: Our study investigated DNA methylation differences in easily accessible white
blood cells (WBCs) between malignant pleural mesothelioma (MPM) cases and asbestos-exposed
cancer-free controls. A multiple regression model highlighted that the methylation level of two
single CpGs (cg03546163 in FKBP5 and cg06633438 in MLLT1) are independent MPM markers. The
epigenetic changes at the FKBP5 and MLLT1 genes were robustly associated with MPM in asbestos-
exposed subjects. Interaction analyses showed that MPM cases and cancer-free controls showed
DNAm differences which may be linked to asbestos exposure.

Abstract: Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm. Patients are
usually diagnosed when current treatments have limited benefits, highlighting the need for noninva-
sive tests aimed at an MPM risk assessment tool that might improve life expectancy. Three hundred
asbestos-exposed subjects (163 MPM cases and 137 cancer-free controls), from the same geographical
region in Italy, were recruited. The evaluation of asbestos exposure was conducted considering the
frequency, the duration and the intensity of occupational, environmental and domestic exposure. A
genome-wide methylation array was performed to identify novel blood DNA methylation (DNAm)
markers of MPM. Multiple regression analyses adjusting for potential confounding factors and inter-
action between asbestos exposure and DNAm on the MPM odds ratio were applied. Epigenome-wide
analysis (EWAS) revealed 12 single-CpGs associated with the disease. Two of these showed high
statistical power (99%) and effect size (>0.05) after false discovery rate (FDR) multiple comparison
corrections: (i) cg03546163 in FKBP5, significantly hypomethylated in cases (Mean Difference in
beta values (MD) = −0.09, 95% CI = −0.12|−0.06, p = 1.2 × 10−7), and (ii) cg06633438 in MLLT1,
statistically hypermethylated in cases (MD = 0.07, 95% CI = 0.04|0.10, p = 1.0 × 10−6). Based
on the interaction analysis, asbestos exposure and epigenetic profile together may improve MPM
risk assessment. Above-median asbestos exposure and hypomethylation of cg03546163 in FKBP5
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(OR = 20.84, 95% CI = 8.71|53.96, p = 5.5 × 10−11) and hypermethylation of cg06633438 in MLLT1
(OR = 11.71, 95% CI = 4.97|29.64, p = 5.9× 10−8) genes compared to below-median asbestos exposure
and hyper/hypomethylation of single-CpG DNAm, respectively. Receiver Operation Characteristics
(ROC) for Case-Control Discrimination showed a significant increase in MPM discrimination when
DNAm information was added in the model (baseline model, BM: asbestos exposure, age, gender
and white blood cells); area under the curve, AUC = 0.75; BM + cg03546163 at FKBP5. AUC = 0.89,
2.1 × 10−7; BM + cg06633438 at MLLT1. AUC = 0.89, 6.3 × 10−8. Validation and replication proce-
dures, considering independent sample size and a different DNAm analysis technique, confirmed
the observed associations. Our results suggest the potential application of DNAm profiles in blood
to develop noninvasive tests for MPM risk assessment in asbestos-exposed subjects.

Keywords: malignant pleural mesothelioma; asbestos exposure; DNA methylation; epigenome-wide
analysis; interaction analysis

1. Introduction

Mesothelioma has a long latency period, usually emerging 20–40 years after asbestos
exposure [1]. Malignant pleural mesothelioma (MPM) is rare (prevalence 1–9/100,000), but
the corresponding annual death toll worldwide is still estimated at about 40,000 [2,3]. Each
year, 125 million people are exposed to asbestos, according to a World Health Organization
report [4]. The International Agency for Research on Cancer confirmed that all fibrous forms
of asbestos are carcinogenic to humans. The main outcome of exposure is mesothelioma,
but cancer at other sites, such as respiratory-tract tumors, are moderately frequent [4].
Previous in vitro studies have demonstrated the cytotoxic effects of asbestos fibers [5,6].

A significant association between MPM and asbestos exposure has been reported,
showing a clear, increasing trend in the odds ratio (OR) with increasing cumulative expo-
sure among subjects exposed to over 10 fiber/mL-years [7]. Another study reported that
the incidence of malignant mesothelioma (MM) was strongly associated with the proximity
of one’s residence to an asbestos exposure source [8].

DNA methylation (DNAm) is an epigenetic mechanism involved in gene expression
regulation. In particular, dysregulation of promoter DNAm and histone modification are
epigenetic mechanisms involved in human malignancies [9].

According to recent papers, both DNAm and genetic alterations may contribute to
MPM tumorigenesis [10–15]. Whereas the genome remains consistent throughout one’s
lifetime, factors like ageing, lifestyle, environmental exposures and diseases can modify
DNAm. The adaptive nature of DNAm means that it can be used to link environmental
factors to the development of pathologic phenotypes such as cancers. Fasanelli et al.
observed an association between exposure to tobacco and site-specific CpG methylation.
They also used peripheral blood DNA to evaluate the importance of these epigenetic
alterations in the aetiology of lung cancer [16].

There is less information on the mechanisms and clinical outcomes of epigenetic
derangements in MPM [17–19]. Several studies have evaluated DNAm alterations in MM
samples [20–22], but few of them focused on DNAm alteration in blood as a circulating
marker. Fischer et al. examined serum DNAm of nine gene-specific promoters from MM
cases [23]. A more recent paper identified hypomethylation of a single CpG in FKBP5
in whole blood cells as a predictor of overall survival in MPM cases [13]. Guarrera et al.
evaluated methylation levels in DNA from whole blood leukocytes as potential diagnostic
markers for MPM and found a differential methylation between asbestos-exposed MPM
cases and controls, mainly in genes related to the immune system [11]. The identification of
reliable DNAm biomarkers with high sensitivity and specificity for MPM risk assessment
would be a major advancement.

This study was undertaken with the goal to identify new biomarkers for MPM risk
assessment and to determine if peripheral blood DNAm profiles have any predictive
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value. The second goal was to evaluate the interaction effect of asbestos exposure with
DNAm on MPM risk. Currently, there are no sensitive testing methods available for the
screening of asbestos-exposed individuals who are at high risk of developing MPM. Thus,
the identification of reliable MPM diagnostic biomarkers in peripheral blood might provide
a tool for detecting the disease at an early stage.

2. Results
2.1. Epigenome-Wide Association Study (EWAS)

CpGs (445,254) passed quality control procedures and were considered for statistical
analyses. EWAS revealed two statistically significant differentially methylated single-CpGs
between case and control groups: cg03546163 in the FKBP5 gene (Mean Difference in beta
values (MD) = 0.09, 95% CI = −0.12|−0.06, p = 1.2 × 10−7, p = 0.028) and cg06633438 in the
MLLT1 gene (MD = 0.07, 95% CI = 0.04|0.10, p = 1.0 × 10−6, p = 0.049) after False Discovery
Rate (FDR) post hoc correction (Figure 1; Table 1).
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Figure 1. Manhattan plot for EWAS test on 450 k single CpGs. Single-CpG DNAm was used as
dependent variable adjusting for age, gender, White blood cells (WBCs: monocytes, granulocytes,
natural killer, B cells, CD4+ T and CD8+ T) estimation, population stratification and technical
variability. FDR post hoc line highlights statistically significant differences between cases and
controls at single CpG level.

Another 10 CpGs showed hypo/hypermethylation in MPM considering FDR < 0.05
but not effect size (MD) cut off ≥ |0.05| (Table 1).

Bootstrap was computed to estimate measures of accuracy using random sampling
methods. The bias-corrected and accelerated (BCa) bootstrap interval was calculated for
cg03546163 in FKBP5 (95% CIBCa =−0.16|−0.10, z0 =−0.008, a = 0.002) and cg06633438 in
MLLT1 (95% CIBCa =−0.06|−0.1, z0 =−0.011, a = 0.0004) genes, confirming the robustness
of the results considering the sample under study.
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Table 1. Differential DNAm analyses ordered by effect size. Information about single-CpGs, including location-related
values and model outputs (effect size, standard error, p values).

Probe ID Chr Map
Position

Gene
Symbol Ucsc Refgene Group Snp Probe Effect Size Standard

Error p Value Fdr Significance

cg02869235 12 124726864 rs73223527 0.058 0.011 1.3 × 10−7 0.028 *§
cg03546163 6 35654363 FKBP5 5′UTR −0.089 0.016 1.3 × 10−7 0.028 *§
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p = 1.1 × 10−12; NK cells, p = 3.6 × 10−4; CD4+ T, p = 2.2 × 10−16; CD8+ T, p = 6.8 × 10−11;
Naïve CD4T, p = 0.012; Naïve CD8T, p = 7.0 × 10−3).

In order to assess if smoking status, classified as current, former and never-smokers,
could modify DNAm profiles, we performed a multivariate regression analysis with the
same model used for the discovery phase. No evidence of methylation differences linked
to different smoking levels was found for any of the twelve statistically significant CpGs.

2.2. Receiver Operation Characteristics (ROC) for Case-Control Discrimination

The baseline model (BM) including age, gender, asbestos exposure and WBCs was
compared with BM adding the DNAm levels of cg03546163 or cg06633438. Receiver Oper-
ation Characteristics 8ROC9 curves showed a significant increase in MPM discrimination
when DNAm information was added in the model (Table 2).

Table 2. Disease discrimination test considering (AUC) comparison between baseline model and
models additionally including single-CpG.

Model AUC DeLong’s Test

BM (asbestos exposure, age, gender and WBCs) 0.75 Reference
BM + cg03546163 (FKBP5) 0.89 2.1 × 10−7

BM + cg06633438 (MLLT1) 0.89 6.3 × 10−8

Models are shown as baseline model (BM) or BM + Single CpG DNAm. AUC Differences between considered
model and BM were estimated with the DeLong’s test.

2.3. Interaction Analysis

CpG sites and asbestos exposure were considered as predictors of MPM risk in the
interaction model. Categorical variables (quantile information) were used considering
median values.

We tested the interaction between asbestos exposure and DNAm levels at cg03546163
in FKBP5 and cg06633438 in MLLT1.

Considering cg03546163 in FKBP5, DNA hypermethylation and low asbestos exposure
levels were used as references, while for cg06633438 in MLLT1, DNA hypomethylation and
low asbestos exposure levels were set as references (Table 3).

The OR was estimated as the relationship between the combination of single-CpGs
DNAm levels and asbestos exposure quantile, and the reference (low median asbestos
exposure and hypermethylation status for cg03546163, or hypomethylation status for
cg06633438). Age, gender, population stratification, and WBCs were included in the GLM
(family = binomial) to adjust the interaction effect.
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Table 3. Interaction between asbestos exposure and single CpG DNAm on the MPM Odds ratios.

DNAm Asbestos Exposure OR Std. Error 95% CI p Value

cg03546163
(FKBP5)

Hypo Low 2.79 1.51 1.26|6.33 0.013
Hyper High 7.21 1.54 3.17|17.27 4.6 × 10−6

Hypo High 20.84 1.59 8.71|53.96 5.5 × 10−11

cg06633438
(MLLT1)
Hyper Low 1.29 1.63 0.70|3.81 0.258
Hypo High 7.27 1.55 3.17|17.65 5.3 × 10−6

Hyper High 11.71 1.57 4.97|29.64 5.9 × 10−8

Reference for cg03546163 in FKBP5: hypermethylation and low asbestos exposure levels; Reference for cg06633438 in MLLT1: hypomethyla-
tion and low asbestos exposure levels.

The relationship between asbestos exposures and single-CpG DNAm levels was
evaluated. An increase of one unit of asbestos exposure (rank transformed fibers/mL
years) was related to the FKBP5 gene (β = −0.016, 95% CI = −0.031|−0.001, p = 0.044) and
MLLT1 gene (β = −0.014, 95% CI = 0.001|0.026, p = 0.035) methylation level variations.

Strong association between asbestos exposure and MPM risk, considering dichoto-
mous distribution of asbestos exposure, was found (OR = 6.11, 95% CI = 3.73|10.20,
p = 1.8 × 10−12). Quartile distribution of asbestos exposure was evaluated to estimate the
potential incremental association with MPM risk (1st quartile: used as reference; 2nd quar-
tile: OR = 1.83, 95% CI = 0.93|3.69, p = 0.09; 3rd quartile: OR = 6.63, 95% CI = 3.30|13.81,
p = 2.1 × 10−7; 4th quartile: OR = 11.00, 95% CI = 5.26|24.30, p = 7.3 × 10−10).

2.4. Validation and Replication

For the replication and validation approaches, an independent sample of 140 MPM
cases and 104 cancer-free asbestos-exposed controls from the same areas were considered,
using a targeted DNAm analysis technique.

The direction and magnitude of the association was consistent for cg03546163 and
cg06633438 DNAm. Patients showed significantly lower DNAm at cg03546163 (MD = −0.061,
95% CI = −0.087|−0.036, p = 4.5 × 10−6) and higher DNAm at cg06633438 (MD = 0.024,
95% CI = 0.061|0.013, p = 4.0 × 10−2) compared with controls. A multivariate analysis con-
firmed that DNAm at cg03546163 in FKBP5 and cg06633438 in MLLT1 were independently
associated with MPM detection.

3. Discussion

In the present study, we used a whole genome microarray approach to investigate
DNAm in WBCs from MPM cases and asbestos-exposed cancer-free controls from a region
with a history of asbestos exposure (Piedmont, Italy) [10] in order to identify new nonin-
vasive epigenetic markers related to MPM. The identification of reliable MPM diagnostic
biomarkers in peripheral blood might improve risk assessment.

We observed hypomethylation of CpG cg03546163, located in the 5′ UTR region of
FKBP5 gene, in MPM cases compared to controls.

Epigenetic activation of the FKBP Prolyl Isomerase 5 (FKBP5) gene has been shown
to be associated with increased stress sensitivity and the risk of psychiatric disorders [24].
FKBP5 is an immunophilin and has an important role in immunoregulation and in protein
folding and trafficking. It plays a role in transcriptional complexes and acts as a cotran-
scription factor, along with other proteins in the FKBP family [25]. The suggestion of a
possible role of FKBP5 in the development and progression of different types of cancer
has stemmed from several studies. In particular, high protein expression has been linked
to either suppression or promotion of tumour growth, depending on tumour type and
microenvironment [26,27].
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FKBP5 is involved in the NF-kB and AKT signaling pathways, both of which are
implicated in tumorigenesis [28]. Notably, NF-kB appears to be frequently constitutively
activated in malignant tumours and involved in the modulation of genes linked to cell
motility, neoangiogenesis, proliferation and programmed cell death [29]. An epigenetic
upregulation of FKBP5 could promote NF-kB activation [30]. STAT3-NFkB activity is
involved in chemoresistance in MM cells [31], and NFkB was shown to be constitutively
active as a result of asbestos-induced chronic inflammation [32].

CpG cg06633438 located in the body region of the MLLT1 gene was hypermethylated
in cases compared to controls.

The MLLT1 gene encodes the ENL protein, a histone acetylation reader component
of the super elongation complex (SEC), which promotes transcription at the elongation
stage by suppressing transient pausing by the polymerase at multiple sites along the
DNA. In acute myeloid leukemia, MLLT1 regulates chromatin remodeling and gene expres-
sion of many important proto-oncogenes [31]. Yoshikawa and colleagues suggested that
mesothelioma may be the consequence of the somatic inactivation of chromatin-remodeling
complexes and/or histone modifiers, including MLLT1 [30].

In mesothelioma patients with short-term recurrence after surgery, frequent 19p13.2
loss was reported. This region encompasses several putative tumor suppressors or onco-
genes, including MLLT1 [32].

Interestingly, MLLT1 and FKBP5 showed opposite behavior, increasing and decreasing
DNAm levels, respectively, in relation to MPM. This finding could reflect the opposite
expression profiles of the two genes among all the different subtypes of white blood cells
in normal human hematopoiesis, as reported in the Blood Spot database (http://servers.
binf.ku.dk/bloodspot/, accessed on 26 May 2021) (Figure 2) [33].
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Our interaction analysis showed that considering DNAm levels at FKBP5 and MLLT1
genes together with asbestos exposure levels may help to better define MPM risk for
asbestos-exposed subjects.

Six single-CpGs showed differential methylation in patients, including those located
in C13orf30, CDC42BPB, ZNF629 and ALG9 genes; the other six were not annotated to
named genes. ALG9 is a glycogene whose reduced expression has been described during
the epithelial-to-mesenchymal transition, an essential process also involved in cancer
progression [34]. The CDC42BPB gene is ubiquitously expressed in mammals and encodes a
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serine/threonine protein kinase, a member of the MRCK family [35]. The role of MRCKs in
cytoskeletal reorganization during cell migration and invasion has been characterized [36].
The biological function of C13orf30 and ZNF629, a DNA-binding transcription factor, is still
to be established.

MPM cases and asbestos-exposed controls showed different proportions of estimated
WBCs, which may denote the crucial implication of the immune system. It is known
that in cancer, including mesothelioma, the immune system is affected [37], and there is
evidence that asbestos directs antigen overstimulation, and that reactive oxygen species
production induces functional changes in WBCs [38]. Indeed, in MPM cases, we showed
a reduction of estimated CD4+ and CD8+ T lymphocytes, suggesting a weaker adaptive
immune system [39]. This may reflect the possible occurrence of functional changes in
WBC subtypes in MPM [40,41].

The need for reliable biomarkers is of extreme relevance for a disease such as MPM,
which is characterized by the accumulation and persistence of asbestos fibers in the lungs,
leading to a long latency period before clear clinical signs of the tumor are detectable.
Several biomarkers for early MPM detection (e.g., mesothelin, osteopontin and fibulin-3)
have been proposed so far; however, some of them are still under investigation [42]. In
this context, DNAm changes in easily-accessible WBCs may provide a useful tool to better
assess MPM risk in asbestos-exposed subjects.

Our findings that DNAm levels in single-CpGs in FKBP5 and MLLT1 genes are inde-
pendent markers of MPM in asbestos-exposed subjects suggest the potential use of blood
DNAm analysis as a noninvasive test for MPM detection.

Some somatic gene alterations in lung cancer have been linked to tobacco smoke, but
few data are available on the role of asbestos fibers: Andujar and colleagues investigate
the mechanism of P16/CDKN2A alterations in lung cancer including asbestos-exposed
patients. P16/CDKN2A gene inactivation in asbestos-exposed non-small-cell lung car-
cinoma (NSCLC) cases, a tumor independent of tobacco smoking but associated with
asbestos exposure, mainly occurs via promoter hypermethylation, loss of heterozygosity
and homozygous deletion, suggesting a possible relationship with an effect of asbestos
fibers [43].We observed epigenetic deregulations in the blood of MPM patients compared
to that of cancer-free controls, suggesting the potential use of DNAm for risk stratification
among asbestos-exposed individuals.

If this observation can be verified in prospectively collected samples, it may be pos-
sible to use CpGs methylation to further improve MPM risk estimation for subjects with
occupational and/or environmental asbestos exposure.

Limitation of the Study

Leukocyte DNAm may be a nonspecific marker related to a general, tumour-induced
inflammatory status rather than a specific MPM biomarker. Further studies are therefore
needed to support our findings.

One main limitation of the functional interpretation of our results is that all our
cases had already developed MPM at recruitment: thus, our findings likely reflect disease
status rather than being markers of the dynamic processes leading to MPM onset. The
lack of MPM tissue from the same subjects also poses major constraints to the functional
interpretation of our findings.

Notwithstanding the above limitations, the discrimination between MPM cases and
asbestos-exposed cancer-free controls improved when DNAm levels were considered
together with asbestos exposure levels.

4. Material and Methods
4.1. Study Population

Study subjects were part of a wider, ongoing collaborative study, which is actively
enrolling MPM cases and cancer-free controls in the municipality of Casale Monferrato
(Piedmont Region, Italy). This area was chosen due to its exceptionally high incidence of
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mesothelioma, caused by widespread occupational and environmental asbestos exposure
originating from the Eternit asbestos-cement plant, which was operational until 1986 [44].
Additional MPM cases and cancer-free controls were recruited from other main hospitals
of the Piedmont Region (in the municipalities of Turin, Novara and Alessandria). The
ongoing collaborative study includes MPM cases diagnosed between incident MPM cases
diagnosed between 2000 and 2010 after histological and/or cytological confirmation, and
matched controls [45].

The present study included 159 MPM cases and 137 cancer-free controls from a larger
case-control study, all of whom had genetic and blood DNAm data [46], good quality DNA
at the time of the analyses, and information on asbestos exposure above the background
level, as defined in Ferrante et al. [47]. MPM cases and asbestos-exposed cancer-free controls
were matched by date of birth (±18 months) and gender. An additional 244 (140 MPM
cases and 104 cancer-free controls) independent samples from the same case-control study
were included for validation/replication analyses.

Tables 4 and 5 shows the descriptive characteristics of controls and cases (Min, 1st
Q, Median, Mean, 3rd Q and Max) that were considered in the statistical analysis (gender,
age, asbestos exposure and WBC estimates: monocytes, granulocytes, natural killer, B cells,
CD4+ T and CD8+ T). Asbestos exposure (occupational, environmental and domestic) was
normalized considering frequency, duration and intensity. Smoking status (current, former
and never smokers) is also explained in Table 6.

Table 4. Descriptive characteristics of cancer-free control group.

Variable Controls (Male 100, Female 37)

Min 1st Q Median Mean 3rd Q Max

Age 41.60 57.41 65.65 64.59 72.63 90.94
Asbestos exposure −2.71 −0.97 −0.48 −0.44 0.09 1.73

Monocytes 0.00 0.05 0.06 0.07 0.08 0.26
Granulocytes 0.36 0.54 0.60 0.62 0.68 0.99
Natural Killer 0.00 0.04 0.07 0.08 0.11 0.29

B cells 0.00 0.07 0.09 0.09 0.11 0.19
CD4+ T 0.00 0.10 0.14 0.14 0.19 0.35
CD8+ T 0.00 0.03 0.06 0.07 0.10 0.23

Minimum (Min), First Quartile (1st Q), Median, Mean, Third Quartile (3rt Q) and Maximum (Max) of variables
related to cancer-free controls.

Table 5. Descriptive characteristics of MPM group.

Variable Cases (Male 113, Female 50)

Min 1st Q Median Mean 3rd Q Max

Age 33.90 61.19 68.68 67.59 75.17 90.80
Asbestos exposure −2.71 −0.21 0.39 0.37 0.98 2.94

Monocytes 0.00 0.05 0.07 0.08 0.10 0.20
Granulocytes 0.37 0.67 0.74 0.74 0.81 1.03
Natural Killer 0.00 0.02 0.05 0.06 0.08 0.23

B cells 0.00 0.05 0.06 0.06 0.08 0.16
CD4+ T 0.00 0.03 0.07 0.08 0.11 0.22
CD8+ T 0.00 0.00 0.02 0.03 0.04 0.22

Minimum (Min), First Quartile (1st Q), Median, Mean, Third Quartile (3rt Q) and Maximum (Max) of variables
related to MPM cases.
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Table 6. Descriptive characteristics of smoking status stratified by disease.

Smoking Habits Cases (163) Controls (137)

n % n %

Current smokers 29 17.79 30 21.90
Former smokers 54 33.13 60 43.80
Never smokers 75 46.01 47 34.31

n and % of the three levels of smoking status stratified by disease.

Our study complied with the Declaration of Helsinki principles and conformed to
ethical requirements. All volunteers signed an informed consent form at enrollment. The
study protocol was approved by the Ethics Committee of the Italian Institute for Genomic
Medicine (IIGM, Candiolo, Italy).

4.2. Exposure Assessment

Information on occupational history and lifestyle habits were collected from all sub-
jects through interviewer-administered questionnaires, which were completed during
face-to-face interviews at enrollment. Job titles were coded in two ways according to the
International Standard Classification of Occupations [47] and the Statistical Classification
of Economic Activities in the European Community.

A cumulative exposure index was computed considering frequency, duration and in-
tensity of asbestos exposure. Occupational, environmental and domestic asbestos exposure
were evaluated by an experienced occupational epidemiologist [47], and exposure doses
(fibers/mL years) were rank-transformed to remove skewness.

4.3. Blood DNAm Analysis and Beta-Value Extraction

DNAm levels were measured in DNA from whole blood collected at enrollment using
the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA, USA). For blood
DNAm analysis (including quality control) please refer to the previous work of the same
group [11].

We used the R package ‘methylumi’ to analyze DNAm data. The average methylation
value at each locus was computed as the ratio of the intensity of the methylated signal over
the total signal (unmethylated + methylated) [48]. Beta-values ranging from 0 (no methy-
lation) to 1 (full methylation) represent the percentage of methylation at each individual
CpG locus.

We excluded the following from the analyses: (i) single beta-values with a p-value for
detection≥ 0.01; (ii) CpG loci that had missing beta-values in more than 20% of the assayed
samples; (iii) CpG loci detected by probes containing single nucleotide polymorphisms
(SNPs) with MAF ≥ 0.05 in the CEPH (Utah residents with ancestry from northern and
western Europe, CEU) population; and iv) samples with a global call rate ≤ 95%. We also
excluded CpGs on chromosomes X and Y.

4.4. Batch Effect, Population Stratification and White Blood Cells Estimations

All differential methylation analyses were corrected for “control probes” Principal
Components (PCs) to account for variability and batch effects in methylation assays. We
used PCs assessed by principal component analysis of the BeadChip’s built-in control
probes as a correction factor for statistical analyses of microarray data. This method allows
researchers to account for the technical variability in the different steps in DNAm analysis,
from bisulfite conversion to BeadChip processing [49].

An individual’s geographic origins may influence DNAm profiles, which could poten-
tially introduce bias. To take this into consideration, we took advantage of the available
data from our previous study, which includes a genome-wide genotyping dataset from the
same study subjects [50]. When genome-wide genotyping was used to calculate the first
PCs, they were shown to correlate with different geographic origins [51].
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For each subject, we extracted WBC subtype percentages, estimated based on genome-
wide methylation data. This method provides quantification of the composition of leuko-
cytes than can be achieved by simple histological or flow cytometric assessments, with an
admissible range of variability [52].

4.5. Statistical Analyses
4.5.1. Epigenome-Wide Association Study

An association test was used to analyze the mean differences (MD) in single-CpG
methylation between MPM cases and asbestos-exposed cancer-free controls. We performed
multiple regression analysis adjusted for age, gender, estimated WBCs (monocytes, granu-
locytes, natural killer, B cells, CD4+ T and CD8+ T), population stratification (first 2 PCs)
and technical variability (first 10 PCs). For multiple comparison tests, a FDR p value ≤ 0.05
was considered statistically significant.

Bootstrapping was performed using random sampling methods to estimate the mea-
sures of accuracy defined in terms of bias, variance, confidence intervals and prediction
error. Bootstrapping can also be applied to control and check the results for stability. The
bias-corrected and accelerated (BCa) bootstrap interval was calculated with regard to
single CpGs.

ROC for Case-Control Discrimination was implemented, and the AUC metric was
applied to estimate the predictive performance of a binary classification (cases/controls).
The baseline model (BM) included age, gender, asbestos exposure and WBCs, and was
compared with the BM after adding the DNAm levels of statistically significant, single-
CpGs at EWAS. AUC differences between BMs before and after the addition of DNAm
levels were estimated with DeLong’s test.

4.5.2. Statistical Power

To ensure a study power greater than 99% (two-tailed test at α = 0.05 and β = 0.01),
only CpGs with a MD between cases and controls ≥ |0.05| were selected.

Covariates were included step-by-step in a sensitivity analysis to validate the associ-
ation output considering effect size, standard error, 95% confidence interval and p value
variations.

Gene set enrichment analyses were carried out on CpGs with a False Discovery Rate
p value (PFDR) ≤ 0.05 to identify pathways that may be affected by MPM-related changes
in methylation.

All statistical analyses were conducted using the open source software R (4.0.2).

4.5.3. Interaction Analysis

Logistic regression was used to analyze the relationship between CpGs and asbestos
exposure in MPM risk (odds ratio), adjusting for age, gender, SNP PCs and WBCs estimates.
Asbestos exposure was classified as above-median or below-median, and CpG methylation
was categorized as above-median or below-median.

MPM risk for a given CpG level and asbestos exposure was expressed by ORij, where
i indicates the asbestos exposure (below-median or above-median) and j indicates the
CpG (above-median or below-median). Considering the direction of the effect, the same
approach was used: for hypomethylated CpGs, above-median was used as the reference
level, whereas below-median was used for hypermethylated CpGs.

Subjects with below-median asbestos exposure and reference-level CpG DNAm were
considered the baseline group, and their MPM risk was coded as OR00 = 1. Interaction
was analyzed with respect to both additive and multiplicative models based on the ORs
obtained by logistic regression.

Synergistic interaction (positive interaction) implies that the combined action of two
factors in an additive model is greater than the sum of their individual effects. Antagonistic
interaction, on the other hand, means that when two factors are present in an additive
model, the action of one reduces the effect of the other.
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Multivariable logistic regression models were used to explore any deviations from a
multiplicative model, including asbestos exposure, CpG and the corresponding interaction
term (CpG × exposure). All models were adjusted for age, gender, SNP PCs, technical
covariates and WBCs estimates. p-values < 0.05 were considered statistically significant.

4.6. Validation and Replication

DNAm signal validation and replication was done by the EpiTYPER MassARRAY
assay (Agena Bioscience). This assay uses a MALDI-TOF mass spectrometry-based method
to quantitatively assess the DNA methylation state of the CpG sites of interest [53]. DNA
(500 ng) was bisulfite-converted as indicated in Section 4.3.

PCR amplification, treatment with SAP solution and Transcription/RNase A cocktails
were performed according to the manufacturer’s instructions, and the mass spectra were
analyzed by an EpiTYPER analyzer. The MassARRAY assay cannot discriminate between
CpGs located in close proximity in the sequence, so instead, the close neighboring CpGs are
analyzed as “Units”, i.e., the measured methylation level is the average of the methylation
levels of the CpGs cumulatively analyzed within the Unit. In the case of cg03546163,
the measured methylation level is the average between two CpG sites located in very
close proximity (Figure S1). For cg06633438, the two adjacent signals were considered,
since the results for the model did not differ for effect size, standard error, 95% CI or
p value (Figure S2).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13112636/s1, Figure S1: Location of cg03546163 investigated by EpiTYPER MassARRAY,
Figure S2: Location of cg06633438 investigated by EpiTYPER MassARRAY.
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