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Abstract

To reconstruct the phenotypical and clinical implications of the Italian genetic structure,

we thoroughly analyzed a whole‐exome sequencing data set comprised of 1686 healthy

Italian individuals. We found six previously unreported variants with remarkable fre-

quency differences between Northern and Southern Italy in the HERC2,OR52R1, ADH1B,

and THBS4 genes. We reported 36 clinically relevant variants (submitted as pathogenic,

risk factors, or drug response in ClinVar) with significant frequency differences between

Italy and Europe. We then explored putatively pathogenic variants in the Italian exome.

On average, our Italian individuals carried 16.6 protein‐truncating variants (PTVs), with

2.5% of the population having a PTV in one of the 59 American College of Medical

Genetics (ACMG) actionable genes. Lastly, we looked for PTVs that are likely to cause

Mendelian diseases. We found four heterozygous PTVs in haploinsufficient genes

(KAT6A, PTCH1, and STXBP1) and three homozygous PTVs in genes causing recessive

diseases (DPYD, FLG, and PYGM). Comparing frequencies from our data set to other

public databases, like gnomAD, we showed the importance of population‐specific data-

bases for a more accurate assessment of variant pathogenicity. For this reason, we made

aggregated frequencies from our data set publicly available as a tool for both clinicians

and researchers (http://nigdb.cineca.it; NIG‐ExIT).

K E YWORD S

genetic frequency database, genomic medicine, Italian population, pathogenic variants,
rare variants, whole‐exome sequencing

1 | INTRODUCTION

Despite the large amount of genomic data published in the last few

years, identifying functionally important variations for the inter-

pretation of personalized disease‐risk profiles remains challenging.

The vast majority of coding variants, which are predicted to harbor

most of the disease‐causing variants are rare, and large‐scale se-

quencing data sets are needed to adequately detect them and esti-

mate their frequencies (Gibson, 2012; Keinan & Clark, 2012).

Frequency databases, including rare variants, are essential for

identifying the genetic causes of Mendelian disorders and, through

gene‐based burden testing approaches, understanding the complex
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genetic bases of common diseases (Gibson, 2012). Moreover,

while the most common genetic variation is shared worldwide, rare

variants, due to their recent origin, tend to be more geographically

clustered in specific populations (Tennessen et al., 2012). Therefore,

the availability of large population‐specific data sets built from

high‐quality sequencing data is crucial for evaluating the role

of rare variations in disease susceptibility and for exploring

fine‐scale genetic structure in a population. In the last few years,

international projects and consortia have collected and made pub-

licly available several data sets of human DNA sequence variation,

such as the 1000 Genomes Project (1000 Genomes Project

Consortium et al., 2015), the Exome Aggregation Consortium (ExAC;

Lek et al., 2016), and the Genome Aggregation Database (gnomAD;

Karczewski et al., 2020). While in the 1000 Genomes Project, the

genotypes of all individuals are available, ExAC and gnomAD can

only be consulted in an aggregated manner (with some stratification),

thus making it impossible to access country‐specific genetic variation
or individual genotypes.

This is a major inconvenience when studying the genetic varia-

tion in populations with a high degree of genetic structure, such as

the Italian one. The Italian population has higher genetic variability

than the other European populations with a well‐defined internal

structure (Fiorito et al., 2016; Raveane et al., 2019). This is mainly

due to the geographic location of Italy, which is separated from

continental Europe by the Alps and enclosed by the Mediterranean

Sea. The Mediterranean Sea itself played a major role in the dis-

persion and admixture of human groups by acting for millennia as a

barrier separating the African and the European continent and then

turning into a bridge as first Bronze Age seafarers started to cross

the open water (Antonio et al., 2019).

The genetic structure of the Italian population has been deeply

investigated using single‐nucleotide polymorphism (SNP) array data,

which are mainly comprised of genome‐wide common genetic mar-

kers (Di Gaetano et al., 2012; Fiorito et al., 2016; Parolo et al., 2015;

Raveane et al., 2019; Sazzini et al., 2016). In this context, the ex-

ploitation of rarer genetic variation could provide new insight into

more recent demographic events. In addition to the well‐known

studies exploring human genetic variation worldwide from whole‐
exome data, many groups (Dopazo et al., 2016; Kwak et al., 2017;

Van Hout et al., 2020) have worked on national sequencing data sets

with three main goals in mind: (i) studying the genetic structure of a

population by also exploiting lower frequency variants, (ii) under-

standing the distribution of putative pathogenic variation in healthy

cohorts, and, ultimately, (iii) generating a catalog of local variability.

Previous large sequencing‐based studies, which contained Italian

participants include the 1000 Genomes Project (with 107 Tuscans)

and more recent studies that focused on specific isolates (Cocca

et al., 2019; Nutile et al., 2019; Sidore et al., 2015; Xue et al., 2017).

In this study, we analyzed a whole‐exome sequencing (WES) data

set comprising 1686 healthy Italian individuals. This is the first large‐
scale study based on sequencing data of the nonisolated Italian po-

pulation covering many different geographical regions of the country.

WES provided a large amount of both common and rare functional

variants that allowed us to give a more functional and clinical picture

of the Italian genetic structure than previous array‐based studies.

We began with a general picture of the genetic patterns in Italy

and their possible interpretation in terms of phenotypes and dis-

eases. We then moved to more clinically oriented analyses using our

Italian sample to show how the availability of population‐specific
databases of allele frequencies can increase accuracy in the identi-

fication of pathogenic variants. Finally, we explored the burden of

putatively pathogenic variants in our data set by focusing specifically

on the American College of Medical Genetics (ACMG) secondary

findings genes (ACMG SF v2.0; Kalia et al., 2017) and genes involved

in Mendelian diseases.

2 | MATERIALS AND METHODS

2.1 | Study sample, editorial policies, and ethical
considerations

We obtained variant calls from WES data of 1751 healthy controls

enrolled in the Italian Genetic Study on early‐onset myocardial in-

farction (Atherosclerosis Thrombosis and Vascular Biology Italian

Study Group, 2003) and already analyzed as part of the “Myocardial

Infarction Genetics Consortium” (Migen; Do et al., 2015). All parti-

cipants in the study provided written informed consent for genetic

studies. The institutional review boards at the Broad Institute and at

the Ethical Committee of the Ospedale Niguarda, Milan (Italy) ap-

proved the study protocol. The ancestry information comprises the

place of birth of the individuals, their parents, and their grand-

parents: 1235 individuals had complete information, 174 lacked the

birthplace of their grandparents, 339 lacked both parents and

grandparents, and 3 had no birthplace themselves.

2.2 | Sequencing

The cluster amplification, sequencing, read‐mapping, and variant

calling were performed by the Broad Institute as described in Do

et al. (2015). Samples were kept when the read depth was 20× or

greater on at least 80% of the exome target.

2.3 | Data cleaning

To produce a data set of high‐quality genotypes of unrelated in-

dividuals with reasonably certain Italian ancestry for analysis, we

performed several filtering steps starting from the original multi-

sample variant call format (VCF) file comprised of 1,373,696 variants

and 1751 individuals.

We began by removing 26 individuals with reportedly non‐
Italian ancestry (even partial), leaving 1725 individuals. Then, the

reported sex of the subjects was cross‐checked with sex inferred

from variant calls (with bcftools + guess‐ploidy, v1.5) and eight
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individuals with discordant sex were removed (most likely mis-

reported in the database), leaving 1717 individuals.

For genotypes, low‐quality genotype calls, specifically calls with

low read depth (DP < 10), calls with very high read depth (DP > 180,

which is three standard deviations more than the mean depth of 60),

and calls with low confidence (GQ < 20) were set to missing. Geno-

type calls in nonautosomal regions in males were converted to

hemizygous. Then, we applied a second low‐quality variant filter

removing variants with the following criteria: missing genotypes for

more than 10% of individuals (88,492 variants), extreme deviations

(p < 10−10) from Hardy–Weinberg equilibrium (2811 variants), and

location in low complexity regions of the genome as described in X. Li

and Kahveci (2006; 4613 variants). Approximately 93% of the var-

iants (1,187,119) remained after the above filters.

A second filtering step on individuals was applied using the re-

maining variants: We verified that all individuals had <5% of missing

genotypes (thus removing no individual). Related individuals (up to

second degree) were inferred from their genotypes and only one

relative was kept, leaving 1688 individuals.

The last filtering step on individuals was the outlier removal

according to principal component analysis (PCA). PCA was per-

formed with PLINK v1.9 (Purcell et al., 2007) using variants with

major allele frequency at least 0.2% and pruning by linkage dis-

equilibrium (LD) at r2 = 0.2. Outliers, defined as samples with Eu-

clidean distance (computed from the first two PCs) >10 SDs from the

mean position of all samples, were removed iteratively, recomputing

the PCA until no more outliers were detected. Two samples were

removed in one iteration as genetic outliers.

Finally, variants, where all individuals were homozygous for the

reference allele, were removed leaving a data set of 669,718 variants

for 1686 unrelated individuals of Italian ancestry. This data set was

used in all analyses looking at the Italian population as a whole.

To perform comparisons between different macro‐areas within

Italy, we selected individuals with a well‐defined ancestry at the

macro‐area level removing those with uncertain or likely mis-

reported ancestry. From the previous data set of 1686 individuals,

we selected the 1197 individuals who had information about all four

grandparents' birthplaces available. We assigned them to a macro‐
area if all their grandparents were born there. We performed further

iterative PCA‐based outlier removal on individuals with more than

3.5 SDs from the center of their cluster, removing 43 individuals in

seven iterations, leaving 1154 individuals. This data set was used in

all analyses comparing different macro‐areas. When comparing sin-

gle administrative regions, we furthermore selected those individuals

whose grandparents were born in the same region (Table S1).

2.4 | Variant annotation and interpretation

Variants were annotated by the software vcfanno (Pedersen et al., 2016),

version 0.3.0, with the following databases: dbNSFP (X. Liu et al., 2016),

version 3.5a; ClinVar (Landrum et al., 2016), release 20200615; and

gnomAD exomes, version 2.0.1.

Functional annotation was performed with SnpEff

(Cingolani et al., 2012), version 4.3t, with respect to the canonical

RefSeq transcript, except for ACMG SF v2.0 actionable genes

for which we used the transcript that occurred most frequently in

the ClinVar annotations of pathogenic variants. Variants were

labeled as protein‐truncating variants (PTVs) when their allele

frequency in the whole data set was below 5% and their reported

effect in the SnpEff annotation was one of the following:

frameshift_variant, splice_acceptor_variant, splice_donor_variant, or

stop_gained. Missense variants were evaluated with seven

pathogenicity predictors: MutPred (B. Li et al., 2009), VEST 3

(Carter et al., 2013), REVEL (Ioannidis et al., 2016), fathmm

with rankscore at least 0.73, M‐CAP (Jagadeesh et al., 2016),

and MetaSVM (Dong et al., 2015) from dbNSFP and CADD

(version 1.4; Kircher et al., 2014) with score at least 25. Missense

variants were considered damaging (DMG) when at least five

predictors out of seven supported this conclusion and their allele

frequency in the whole data set was <5%. Variants that were

annotated as “pathogenic” or “likely pathogenic” without any other

conflicting annotation and whose allele frequency in the whole

data set was <5% were labeled CLNPAT variants.

To highlight variants with a putative role in pharmacogenetics,

we annotated them with the specialized public repository PharmGKB

(Whirl‐Carrillo et al., 2012).

We then computed the number of “dominant” genes with at least

one heterozygous PTV and the number of “recessive” genes with a

homozygous PTV, and we annotated these genes with the OMIM

database (McKusick, 1998). Finally, we selected genes harboring PTVs

and with a probability of being loss‐of‐function intolerant (pLI) equal to 1.

As above, we annotated these genes with OMIM. The genotypes

reported in Section 3.7 are of good quality, with coverage >20 and

balanced allele depth for heterozygous variants. We further applied

Loss‐Of‐Function Transcript Effect Estimator (LOFTEE), which is an

Ensembl Variant Effect Predictor (VEP) plugin used to identify

high‐confidence loss‐of‐function variants.

2.5 | Exploring the genetic structure with coding
variants

PCAs on the whole data set and on macro‐areas using only individuals

with a “well‐defined” macro‐area were performed with PLINK v1.9

(Purcell et al., 2007) with a major allele frequency of at least 0.2% and

pruning by LD at 0.2 r2. On the same data set, we inferred pairwise

fixation index (FST) estimates among macro‐areas and among Italian

administrative regions using the smartpca software implemented in

the EINGESOFT package (Patterson et al., 2006), which computes the

Hudson's FST estimator.

To investigate demographic events from rare variations in Italian

macro‐areas, we computed the allele frequency spectrum in each Italian

macro‐area and administrative region and tested for differences. To

avoid bias caused by the different sizes of our regional subpopulations,

we performed random subsampling without replacement of the
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individuals, producing 1000 subsamples of 10 unrelated individuals for

each subpopulation with at least 10 samples. Allele counts were com-

puted separately in each subsample for the variants that were observed

in that subsample, thus producing counts ranging from 1 to 10 (as we

counted the minor allele for subsamples of 10 individuals). This process

yielded 1000 estimates of the allele frequency spectrum (with 10 fre-

quency bins) for each subpopulation. Each frequency bin was analyzed

separately using the 1000 subsamples to estimate the distribution of

values for each subpopulation. This method has the desirable property of

producing estimates whose median is independent of the size of the

subpopulation. However, the smaller subpopulations showed a reduced

variance as the subsamples have high overlap and are thus not in-

dependent enough. Thus, the allele frequency spectrum was computed

independently for each subsample of a subpopulation. We then com-

pared the distribution of these uniformly sized subsamples for each allele

count using a Wilcoxon rank‐sum test and Bonferroni's correction in the

R programming language environment (R Core Team, 2017). Note that

this is not a bootstrap: We are subsampling individuals and not variants

(as one would normally do to estimate a distribution of variants), and we

are subsampling without replacement because sampling individuals more

than once would entail having related individuals in the samples, which

would, in turn, produce completely skewed allele counts. In particular,

sampling individuals with replacement would cause very rare variants

occurring only in one individual to be counted more than once. This

would happen more when subsampling from smaller subpopulations

producing a very strong bias, where rare variants were shifted to-

ward higher frequency bins, completely skewing the allele frequency

spectrum distribution and making comparisons impossible.

Finally, we retained individuals whose four grandparents came

from the same macro‐area, we filtered out variants with a minor

allele frequency lower than 5% and we computed the long‐term ef-

fective population size for each of the four Italian macro‐areas using
the NeON R‐package (Mezzavilla & Ghirotto, 2015).

2.6 | Genetic comparison within Italy and between
Italy and Europe

Differences in allele frequency between macro‐areas were tested with

Fisher's exact test. We only tested Northern versus Southern Italy (622

and 305 individuals, respectively): We excluded both Sardinia and Cen-

tral Italy because of their reduced sample size of 20 and 76 individuals,

respectively and, for Central Italy, also because of its intermediate po-

sition in the North‐South cline. We only tested variants with an allele

frequency >1% in the whole data set as with our sample sizes we did not

have the power to test lower frequency variants. We considered sig-

nificant all variants passing the 0.01 significance threshold after Bon-

ferroni's multiple test correction. We then computed single‐locus FST

estimates to confirm the genetic signals retrieved with Fisher's exact test.

Then, we tested for allele frequency differences between the

Italian data set and non‐Finnish Europeans from gnomAD, using the

χ2 contingency test instead of Fisher's exact test, due to the much

higher sample sizes in this comparison. For the same reason, we tested

all variants and we used a stricter p value threshold of 0.01 (after

Bonferroni correction).

In both frequency comparisons (Northern vs. Southern Italy and Italy

vs. non‐Finnish Europeans), we further investigated the most significant

variants. We searched for them in the Genome‐Wide Association Studies

(GWAS) catalog (downloaded in March 2019; Denny et al., 2013;

MacArthur et al., 2017), keeping only associations with a p<5E−08. We

also performed a gene enrichment analysis on the genes harboring

these variants with the online tool Enrichr (Chen et al., 2013;

Kuleshov et al., 2016), selecting the significant enrichments in the

following databases: “dbGaP” (Mailman et al., 2007; Tryka et al., 2013),

“GWAS catalog 2019” (Buniello et al., 2019), “Jensen disease,” “Kyoto

Encyclopedia of Genes and Genomes” (KEGG; Kanehisa & Goto, 2000),

and “GO Biological Process.”

2.7 | Burden test on genes related to hypertension

We gathered an extensive list of 3085 genes and genomic regions

that were reported to be associated with the phenotype “Essential

hypertension” in the literature from studies based on a genome‐wide

array, exome array, and sequencing.

Hypertensive status was available for 1670 individuals, of which

150 were affected. We also retrieved systolic and diastolic blood

pressure values (SBP and DBP, respectively). We computed the

burden of PTV and DMG variants (allele frequency <5%) on genes

with at least nine variants (>0.5% of incidence).

According to the δ values (percentage of differences between

hypertension and nonhypertension outcome), a gene‐based matrix

was selected for association analyses. For the genetic risk score

(GRS) calculation, three subdatasets were considered:

(i) δ ≥ 1 and δ ≤ −1, gene matrix = 101;

(ii) δ ≥ 1 (at risk score), gene matrix = 70;

(iii) δ ≤ −1 (protective score), gene matrix = 31.

The normality assumption of the data was evaluated with the

Shapiro–Wilk test; homoscedasticity and autocorrelation of the variables

were assessed using the Breusch–Pagan and Durbin–Watson tests.

Logistic regression for hypertension and linear regression for

SBP and DBP were performed to test for genetic association. The

models were adjusted for potential confounders, including age,

gender, body mass index, smoking status, alcohol consumption, and

population substructure via the top two PCs. Results were reported

as estimates (differences of means or variation at one unit increase

of GRS, considering dichotomic and continuous distribution,

respectively) at 95% confidence interval. The level of significance

was set at p < 0.05. Statistical analyses were conducted using R

(version 3.0.3; R Core Team, 2017).

We searched the variants within the 101 genes on the

GeneATLAS database (Canela‐Xandri et al., 2018) using the keyword

“I10 Essential (primary) hypertension.” We considered significant

those variants with a p value after multiple test corrections
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of 9.06E−12. The results of the association in 84,640 cases and

367,624 controls in UK Biobank for 103 SNPs were retrieved.

3 | RESULTS

We analyzed our WES data set of healthy Italian subjects with the dual

goal of exploring the genetic patterns of the Italian population and their

importance in clinical genetics. After quality control procedures

(Section 2), the data set comprised 1686 unrelated individuals, with

669,718 observed variants. As expected for a sequencing data set with

this sample size, most variants are low frequency: 92.2% have an allele

frequency <5% in our data set (88.4% less than 1% and 76.4% less than

0.1%) and 60.5% are singletons, that is, only observed in a single sample.

Functionally, 35.4% of the variants are missense, followed by intronic

(29.5%) and synonymous variants (21.7%), while PTVs (“frameshift in-

del,” “stop gained,” and “essential splice variant”) accounted for 1.95% of

the total variants (Table S2). Given our sample size, we expect to ob-

serve at least once 96% of the variants with an allele frequency >0.1%

in the general population, and virtually all variants with a frequency

>0.2% (Supporting Information Materials and Figure S1). Note that

throughout the text, variants are referred to as “rare,” “low‐frequency,”
and “common” without implying any specific frequency threshold. Ex-

plicit thresholds are given as required as in the previous paragraph.

Following the guidelines set in previous studies (Fiorito et al., 2016;

Sazzini et al., 2016), we split the 20 Italian administrative regions into

four macro‐areas (Figure 1a and Table S1): Northern Italy, Central Italy,

Southern Italy, and Sardinia. We assigned individuals to a macro‐area or

to a region only when it was the shared birthplace of all four grand-

parents. Additionally, we removed those who did not cluster well with

their macro‐area in PCA (Section 2). The sample sizes for macro‐areas
and regions are in Table S1.

3.1 | Exploring the genetic structure with
exome variants

The genetic structure of Italy is clearly discerned from the PCA

(Figures 1b and S2A). The main visible features are the North‐South cline

and the Sardinian isolate, confirming the distinctive genetic profile (mir-

roring the geographic shape of the country) shown by high‐density arrays
in previous studies (Di Gaetano et al., 2012; Fiorito et al., 2016; Parolo

et al., 2015; Raveane et al., 2019; Sazzini et al., 2016).

While we could not discern any inner structure within macro‐
areas from the PCA (Figure S2), by plotting the values of the first

principal component for each region, we observed some stratifica-

tion even at the regional level (Figure 1c). This was confirmed by

pairwise Wilcoxon testing (Table S3).

To provide an additional measure of population differentiation, we

estimated the pairwise fixation index (FST; Section 2) between regions

(Figure S3). Again, we observed a strong differentiation between macro‐
areas. However, a finer dissection of the Italian population was not

possible due to the low genetic distance between regions in the same

macro‐area and the relatively high standard errors of the estimates,

especially for regions with small sample sizes (Figure S3 and Tables S1,

S4, S5).

We also took advantage of the availability of rare variation in our

data set to look for differences in the allele frequency spectrum at the

regional level, that is, the distribution of the allele frequency of the

variants in the subpopulations (Section 2). Significant differences were

detected between all regions (except Lombardy and Emilia Romagna) in

the low‐frequency end of the spectrum, with Southern Italy having the

most low‐frequency variants (regions are plotted in Figure 1d, macro‐
areas in Figure S4 and nominal p values are reported in Table S6).

Finally, we inferred the effective population size changes of the

four macro‐areas from 5000 to 30,000 years ago (Figure S5).

3.2 | Allele frequency differences between
Northern and Southern Italy

After evaluating the genetic structure of Italy as a whole, we delved

into details examining which variants and genes present the highest

degree of differentiation between Northern and Southern Italy (622

and 305 individuals, respectively), focusing on the possible pheno-

typic implications of the structure we observed. Other macro‐areas
were not examined because of their small sample size.

Allele frequencies in the North and South are highly correlated

(Pearson r = 0.998; p < 2.2E−16; Figure 1e), with a maximum differ-

ence of 17%. We tested for significant differences between all var-

iants with a frequency of at least 1% in our data set and reported in

Table 1 the six variants with a p < 0 .01 after Bonferroni correction

for multiple testing. They are also the same six variants with the

highest single‐locus FST estimate. The full list is available in Sup-

porting Information File S1. From the test results, we observed a

genomic inflation factor of 1.77 (Figure S6) as expected when com-

paring groups with population stratification.

The strongest signal is rs1129038, located in the 3ʹ‐UTR of the

HERC2 gene. The derived allele T is enriched in Northern Italy, and it is

associated with eye and hair color and skin pigmentation (Morgan

et al., 2018). Its homozygous occurrence is highly predictive of blue eye

color (Eiberg et al., 2008), but it is also associated with pigmentation‐
related diseases like melanoma and vitiligo (Jin et al., 2012).

The second strongest signal comprises three very close (<400bp

apart) and previously unreported missense variants in the OR52R1 gene,

an olfactory receptor reported as a segregating pseudogene by RefSeq.

The third signal is rs1229984, a missense variant in the ADH1B

gene encoding the beta subunit of class I alcohol dehydrogenase (ADH),

which is involved in ethanol metabolism. The derived allele T (which, for

this variant, is the reference allele) protects against alcoholism by

metabolizing alcohol to acetaldehyde more efficiently than the ances-

tral allele C leading to elevated acetaldehyde levels that make drinking

unpleasant (Polimanti & Gelernter, 2017). On the contrary, the C allele

is associated with alcohol‐related diseases, alcohol dependence
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(Sanchez‐Roige et al., 2019), cancers (Lesseur et al., 2016), and, not

surprisingly, to the trait “regular attendance at a pub or social club”

(Day et al., 2018).

The fourth signal, the intronic SNP rs256438 in the THBS4 gene, is

closer to the background (Figure 1e). The variant was inconclusively

associated with serum thyroid‐stimulating hormone levels (Malinowski

et al., 2014) and significantly associated with abnormalities of ocular

refraction (Hysi et al., 2020).

We also examined the remaining top 1% of the most significant

variants to look for associations in the GWAS catalog and

performed a gene enrichment analysis. Both analyses yielded

signals related to pigmentation, immune, and cardiovascular traits

and diseases. Of particular interest are rs16891982 (SLC45A2

gene), rs16903574 (OTULINL gene), and rs3131379 (MSH5 gene),

which were associated with pigmentation, allergic diseases (asthma,

hay fever, eczema), and systemic lupus erythematosus, respectively

(Supporting Information Materials and File S2).

3.3 | Allele frequency differences between Italy
and Europe

The allele frequency differences we observed along the Italian

peninsula are part of the larger North‐South European clines

F IGURE 1 Genetic structure of the Italian population and allele frequency (AF) differences between Northern and Southern Italy. (a) The
administrative province of origin of the individuals in our data set. The size of the circles shows the number of individuals. (b) Scatterplot of the first
two components of the principal component analysis (PCA). (c) Strip and boxplot of the first principal component of each individual grouped by
Italian regions. (d) Strip and boxplot of the number of low‐frequency variants in 1000 resamplings of 10 individuals from each region. Only regions
with at least 10 individuals have been included in (c) and (d). (e) Density plot of all variants by their alternative allele frequency in Northern
and Southern Italy. Labels (variant ID and gene) are shown for the 16 variants with a p < 0.05 after multiple test correction. Label color denotes the
higher frequency of the allele in the Northern (blue, 622 individuals) or Southern (red, 305 individuals) Italian population
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reported in gnomAD. In the case of HERC2 and OR52R1, these clines

extend to Africa. In contrast, for ADH1B, the derived allele is

enriched only in Southern Europe, while the ancestral allele is almost

fixed in both Northern Europe and Africa. Only East Asia sports a

(much) higher frequency of the derived allele (Table 1).

We tested all the variants for significant allele frequency dif-

ferences between the whole Italian population from our data set and

the gnomAD non‐Finnish European population. We found 19,561

variants passing the 0.01 significance threshold after Bonferroni's

multiple test correction (Supporting Information File S1). Of these

variants, 35 have been reported in ClinVar as linked to disease or

drug response: 21 with higher and 14 with lower frequency in Italy

than in Europe. We reported the most interesting ones in Table 2,

while the full list is in Table S7.

Out of 35 variants, 8 have been submitted as pathogenic or likely

pathogenic. Among those, we found several variants, with an allele fre-

quency <0.1%, that are at least three times more frequent in Italy: two of

them have been evaluated as “Pathogenic” for phenylketonuria

(rs76212747 in the PAH gene; Guldberg et al., 1998) and thalassemia

(rs11549407 in the HBB gene; Richards et al., 2015) and showed a fre-

quency five and seven times higher in Italy than in the non‐Finnish
European gnomAD data set, respectively. Three of them (rs200635937

in the gene GPR161, rs770171865 in PSAP, and rs769409705 in

SLC34A1) have been submitted as “Likely Pathogenic” for the medical

conditions pituitary stalk interruption syndrome, sphingolipid activator

protein 1 deficiency, and infantile hypercalcemia, respectively. In con-

trast, we found one variant in the gene FLG (coding for profilaggrin),

submitted as pathogenic for atopic dermatitis (Richards et al., 2015) and

ichthyosis vulgaris (Smith et al., 2006), whose frequency is seven times

lower in Italy (0.24% vs. 1.6%).

Another 13 variants were submitted as “risk factors” or “protective.”

Among those with lower frequency in Italy, we found three variants that

are risk factors for myocardial infarction and one protective variant for

alcohol dependence (in ADH1C). Another statistically significant signal

with higher frequency in Italy (42% vs. 26%) was a missense variant in

TLR1, which is a risk factor for leprosy.

The remaining 14 variants were submitted as “drug response.”Again,

some have a higher frequency in Italy, like rs57913007 (5.1% vs. 2.9%),

which is linked to response to tramadol (analgesic). Others have a lower

frequency in Italy, like rs11676382 (5.5% vs. 9.3%), which is linked to the

efficacy of warfarin (anticoagulant). Still, other variants were linked to

cisplatin (chemotherapeutic) toxicity, phenylthiocarbamide tasting, and

nicotine toxicity.

Finally, we explored the 19,561 variants, whose allele frequencies

were significantly different between Italian and non‐Finnish European

individuals, both by the direct association in the GWAS catalog and by

gene enrichments, thus obtaining a vast number of phenotypes and

diseases (Supporting Information Materials and File S3). We can group

most of them in five broad categories: pigmentation (e.g., hair and skin

color, tan response, and skin cancer), cardiovascular (both as sus-

ceptibility to diseases and related phenotypes), immune diseases (e.g.,

rheumatoid arthritis, type 1 diabetes mellitus), cancer, and neurolo-

gical disorders (such as Alzheimer's disease).T
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3.4 | Importance of the reference population for
assessing pathogenicity

When assessing the pathogenicity of variants, it is often appropriate to

assume that variants that frequently occur in healthy individuals are not

pathogenic, at least not with high penetrance. This is normally done by

checking allele and genotype frequencies in public databases (Eilbeck

et al., 2017). We explored the risk of mis‐assessing the pathogenicity of a

variant by using frequencies estimated from an insufficient number of

individuals or a population that is not a perfect match for the affected

individual.

We compared the allele frequencies estimated from our Italian

sample with those estimated from commonly used reference data sets:

the Tuscans and non‐Finnish Europeans in the 1000 Genomes Project

(phase 3, “KGP_TSI” and “KGP_NFE,” respectively) and the non‐Finnish
European in gnomAD (“GND_NFE”). Frequency thresholds used in pa-

thogenicity assessment are disease‐ and phenotype‐specific. We chose

a few commonly used thresholds and counted howmany variants in our

data set fall on different sides of each threshold for each of the re-

ference data sets in Table S8. For instance, if we decide to assess

variants with an allele frequency >1% as nonpathogenic, there are 3782

false pathogenic candidate variants whose frequency is greater than the

threshold in our sample but below it in gnomAD. While most of them

are very close to the threshold in both data sets, a few are quite dif-

ferent: 590 are less than 0.5% and 33 less than 0.1% in gnomAD, while

still being above 1% in our sample. Frequency discrepancies as large as

those in variants satisfying other pathogenicity criteria could cause an

incorrect assessment of pathogenicity even under careful scrutiny. For

instance, we reported all variants that were reclassified in ClinVar from

nonbenign (i.e., “Uncertain significance,” “Conflicting interpretations of

pathogenicity,” “Likely pathogenic,” or “Pathogenic” in the August 5,

2018 release) to benign (i.e., “Benign” in the June 15, 2020 release), and

whose allele frequency is at least 1.5 times higher in our data set than in

the non‐Finnish Europeans from gnomAD (Table S9). The higher fre-

quency in our data set could have been useful in detecting these mis-

classifications, especially in genes responsible for dominant diseases.

For instance, rs34136999, rs61734190, and rs121912749 were from 5

to 20 times more frequent in our Italian data set than in gnomAD, and

they were reclassified as benign after being submitted as uncertain

significance, conflicting interpretations, and pathogenic for serious

dominant disease, such as Lynch syndrome, Angelman syndrome, and

spherocytosis, respectively.

3.5 | Putatively pathogenic variants

We examined how other common pathogenicity assessment criteria

behave in our healthy Italian cohort. We employed three different

and complementary methods for assessing the pathogenicity of a

variant: PTV, missense variants predicted to be damaging (DMG, see

Section 2), and variants submitted as pathogenic or likely pathogenic

in the ClinVar database (CLNPAT). After excluding variants with an

allele frequency >5% in our data set, we obtained 12,852 PTV,

23,682 DMG, and 1308 CLNPAT variants in the whole data set. We

refer to these variants as putatively pathogenic (PP) variants.

We related the functional effect and pathogenicity of variants to

their rarity measured as the ratio of singleton variants to the total

number of variants in each category (Figure 2a). We also computed

the pathogenic burden in our healthy Italian individuals showing that

the average number of PP variants in an individual is 16.6 for PTV,

23.2 for DMG and 1.8 for CLNPAT variants (Figure 2b–d).

As expected, drug and xenobiotics metabolism, as well as olfactory

transduction pathways from KEGG, accumulate the highest number of

functionally disrupting variants (Supporting Information Materials and

Figure S7), while several metabolic and the “ABC transporters” pathways

were the most prone to accumulate DMG variations (Figure S8).

Finally, we verified that our sets of PTV and DMG PP variants

could be a valid “proxy” for pathogenicity by relating the genetic

burden of such variants in selected genes (File S5) with three blood

pressure phenotypes, which were available in our data set (hy-

pertension, SBP, and DBP). The resulting GRSs were significantly

associated (p < 0.05) with the target phenotypes in all models, thus

indirectly validating our assessment of variant pathogenicity

(Section 2, Supporting Information Materials, Tables S10 and S11).

3.6 | PP variants in ACMG SF genes

To explore PP variants in a more clinically relevant context, we focused

on the 59 medically actionable genes recommended by the ACMG for

reporting of incidental findings (ACMG SF v2.0; Kalia et al., 2017).

We found that PTVs are only half (0.52) as frequent in the

ACMG genes than in the whole genome (Table S12). In contrast,

DMG and CLNPAT variants are 2.20 and 5.97 times more frequent in

the ACMG genes, respectively, while missense variants are only

slightly less abundant (0.95).

Most of the PTV (68%) and DMG (75%) variants in the ACMG

genes had already been submitted to ClinVar. Unsurprisingly, 22 out

of 29 submitted PTVs are classified as pathogenic or likely patho-

genic, while most of the submitted DMG variants are of uncertain

significance or with conflicting interpretations (the rest are evenly

split between the benign and pathogenic classes; Table S13).

We computed the prevalence of PP variants in the ACMG genes in

our healthy Italian population (Table 3). Here, PTV and DMG variants

were further restricted, removing those that were reported as benign or

likely benign in ClinVar at least once. We see 2.5% of the population

carrying PTVs in the ACMG medically actionable genes (Table 3).

3.7 | PP variants in Mendelian diseases

We also looked for variants that, when occurring in an individual affected

by a matching phenotype, would be likely diagnosed as causative. We

considered two subsets of our PP variants with a high likelihood of being

causative of Mendelian disorders (Supporting Information File S4). The

first subset consists of heterozygous PTVs with an allele frequency
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<0.1% in loss‐of‐function intolerant genes for a total of 80 candidates

“dominant” variants. The second subset consists of homozygous PTVs

with an allele frequency of <1% in genes reported as “recessive” in

OMIM (McKusick, 1998), for a total of 36 candidates “recessive” variants.

Loss‐of‐function intolerant genes were selected as those with pLI equal

to 1. pLI is a score introduced by Lek et al. (2016), which is frequently

used for prioritizing candidate genes in practical diagnostics.

We manually reviewed these variants selecting those where the

Mendelian disease mechanism of the relevant gene was compatible

with a loss‐of‐function variant and assessing their ACMG patho-

genicity class with Varsome (Kopanos et al., 2019; Table 4).

We found four heterozygous PTVs in haploinsufficient genes

known to cause Mendelian diseases with a dominant model. They are

very rare, appearing in a single individual in both our data set and the

non‐Finnish European from gnomAD (our data set is part of gnomAD).

Three of these were pathogenic (Class 5) and one likely pathogenic

(Class 4), affecting genes associated with epilepsy (STXBP1), mental

retardation (KAT6A), and basal cell nevus syndrome (PTCH1).

We also found three homozygous PTVs in genes known to cause

Mendelian conditions by a recessive or semidominant model. These

variants have a higher frequency both in our data set and in gno-

mAD. However, they are well‐known variants and are reported in

ClinVar as causing milder conditions that may have gone un-

diagnosed: dihydropyrimidine dehydrogenase deficiency (increased

toxicity of several chemotherapy drugs), ichthyosis vulgaris (common

dominant skin disorder where homozygosity may cause a more ex-

treme phenotype), and McArdle disease (a metabolic syndrome that

can be diagnosed as late as the third or fourth decade).

All four frameshift variants are located in the last or second‐to‐
last exons and prolong the open reading frame, thus making their

effect on the protein function harder to interpret. There is evidence

of frameshift variants increasing the final transcript length, allowing

them to escape the nonsense‐mediated messenger RNA decay

pathway leading to the loss of function through different mechan-

isms (Carvalho et al., 2009; Kausar et al., 2019; Patronas et al., 2012).

However, we cannot rule out the possibility of these variants being

F IGURE 2 Evaluation of pathogenic variation. (a) Ratio of singleton to the total number of variants for each effect and pathogenic category.
(b–d) Distribution of the burden of each pathogenic category per individual counted as the number of variants observed. The shaded area
shows the 5%–95% confidence interval estimated by bootstrapping. The red line shows the expected Poisson distribution as a reference
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gain‐of‐function, dominant‐negative, or even without any pathogenic

consequences.

4 | DISCUSSION

The genetic structure of the Italian population has already been in-

vestigated usually using SNP array data mainly comprised of genome‐
wide common genetic markers (Di Gaetano et al., 2012; Fiorito

et al., 2016; Parolo et al., 2015; Raveane et al., 2019; Sazzini et al., 2016).

Other well‐known studies explored human genetic variation worldwide

from whole‐exome data (ExAC/gnomAD). This is the first study to ex-

plore the Italian genetic structure fromWES data of a sizable number of

individuals.

We corroborated the previously observed genetic structure of Italy

with the north‐south cline of the mainland and Sicily as well as the

outlying Sardinian isolate (Di Gaetano et al., 2014). This shows that WES

data also provides enough information to highlight the Italian macro‐
areas both in PCA, FST, and in the allele frequency spectrum. Northern

Italy appears more genetically homogeneous than Central and Southern

Italy, while the higher quantity of rare variants in the Southern Italian

regions suggests a higher effective population size (Lao et al., 2008;

Marth et al., 2004). This is an independent confirmation of previous

results obtained by LD‐based methods (Fiorito et al., 2016).

Many of the differences in variant frequencies between

Northern and Southern Italy occur in genes involved in greater

European latitudinal clines like skin/hair pigmentation (HERC2,

SLC45A2) and lactose tolerance (LCT), where the associated pheno-

types are also known to follow the same cline (Donnelly et al., 2012).

Pigmentation and skin diseases caused by UV light exposure are also

a recurrent theme in GWAS direct associations and gene enrich-

ments both in the Northern–Southern Italy comparison and in the

Italy–Europe comparison. The rs1229984 variant in the ADH1B gene

follows a similar yet different distribution: The derived allele is

almost absent in Northern Europe but more frequent in Spain and

Italy, especially in Southern Italy. However, it is also rare in Africa

and worldwide except in Eastern Asia, where it is the major

allele and shows signs of recent positive selection (Polimanti &

Gelernter, 2017). Notably, we also found an independent signal at

rs698 in ADH1C in the Italy‐Europe frequency comparison, which

relates to alcohol metabolism. Other differences we observed are

harder to link to a phenotype, like the differences in olfactory re-

ceptor genes that are generally considered to be under low selective

pressure for their tolerance of loss‐of‐function variants (Karczewski

et al., 2020). This makes the strong signal we found in the OR52R1

gene that has no known phenotypic association hard to interpret.

HERC2, OR52R1, and ADH1C were previously reported as genes

containing non‐specified, differentially frequent variants between

Italian macro‐areas (Sazzini et al., 2016).

Differences in frequencies among populations and public databases

also have an impact on the assessment of variant pathogenicity in

disease‐affected individuals. An often‐employed criterion is excluding

variants that have a high allele frequency in the healthy population. This

is done based on the assumption that purifying selection has curbed the

frequency of high penetrance pathogenic variants (Richards et al., 2015).

However, public frequency databases may not be fully representative of

the real population of the affected individual. In that case, a variant

that is common in the real population might be rare in the reference

population and thus erroneously be considered as pathogenic.

What does this entail for Italy when publicly available European

reference databases are employed? We observed that a large sample

size seems to be the most important factor to increase accuracy: The

107 Tuscans from the 1000 Genomes Project, although the most

closely related to our sample, are too few to produce accurate fre-

quencies for low‐frequency variants. The non‐Finnish European po-

pulations from the 1000 Genomes (~400 individuals) and gnomAD

(~56,000) produce more accurate frequency estimates for our Italian

sample. However, even with gnomAD, which provides the best results,

we found evidence of a possible misclassification of variants. Note that

our data set is part of gnomAD and while this is undoubtedly a bias, its

effect should not be very significant as our Italian sample amounts to

just 3% of the entire non‐Finnish European gnomAD sample. This is

also the reason why we did not compare our sample to the Southern

Europe gnomAD subpopulation, where the overlap is much greater.

In conclusion, gnomAD provides very good frequency estimates

for Italian individuals. However, the researcher/clinician should be

aware of the small likelihood that variants could be misclassified by

relying exclusively on it. When possible, we recommend the use of a

complementary population‐specific database of frequencies estimated

from at least a thousand individuals. Conceivably, frequency databases

of this kind could be used to detect previously misclassified variants in

pathogenicity databases like ClinVar, as we showed in an example. For

these purposes, we made the aggregated frequencies from our Italian

sample publicly available from the website of the Italian partnership

called Network for Italian Genomes (http://nigdb.cineca.it, NIG‐ExIT).
We then investigated the potential functional and pathogenic role of

variants in our data set, producing three classes of PP variants: PTV,

DMG, and CLNPAT. Care must be used when speaking about patho-

genicity in a cohort of reportedly healthy individuals without manifest

TABLE 3 Prevalence of PP variants in ACMG genes in the Italian
population

PP category Individuals Ratio (%)

PTV 82 4.9

PTV without benign 42 2.5

DMG 437 25.9

DMG without benign 134 7.9

CLNPAT 74 4.4

Note: Column “Individuals” shows the number of individuals carrying at

least one alternative allele of at least one variant in the corresponding PP

category. Column “Ratio” is the ratio of individuals carrying the variant in

our Italian sample.

Abbreviations: ACMG, American College of Medical Genetics;

PP, putatively pathogenic; PTV, protein‐truncating variant.
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pathogenic phenotypes. Without a specific disease hypothesis, criteria for

assessing variant pathogenicity must necessarily be very broad and

generic. For instance, as we wanted to also include risk factors and low‐
penetrance variants causing mild phenotypes, we purposely chose a ra-

ther high allele frequency threshold of 5%. Another limit is that without a

disease, we do not have a list of linked genes; thus, we look at variants in

the whole exome even though many genes are not linked to any disease.

For all these reasons, we call these sets of variants putatively pathogenic

to stress that they are enriched in variants that are likely to be

pathogenic.

Indeed, we saw that categories of variants understood to have

greater effect and/or deleteriousness have higher ratios of singletons

(Figure 2a), especially those included in the PTV category. Also, the

high ratio of PTV and DMG categories is consistent with our inter-

pretation of deleteriousness. On the contrary, CLNPAT has a much

lower ratio but this can be explained by the fact that singleton variants

from our data set are less likely to have been observed, diagnosed, and

submitted to ClinVar than the other more common variants.

We also gave some estimates on the pathogenetic burden of our

Italian individuals finding that they carry, on average, 16.6 PTVs, 23.2

DMG, and 1.8 CLNPAT variants. The higher number of DMG with

respect to PTVs can be explained by their weaker effect because in

many genes, even a very disruptive missense variant is unlikely to be

as disruptive as a PTV. The much lower number of CLNPAT variants is

likely due to the ClinVar database focus on genes that are relevant to

disease, while PTVs and DMG variants are found more evenly in the

whole exome. Also relevant is that most of the variants in our data set

are low frequency and again less likely to be in ClinVar. Conversely, all

variants were tested for being PTV and DMG. Note that these in-

terpretations are not population‐specific: For instance, we believe

DMG variants to be more common than PTVs in most populations.

Our estimate of individual PTV burden is roughly comparable

with estimates provided by other studies. For instance, in Van Hout

et al. (2020), the authors examined individuals from the UK Biobank

and found 15 and 24 loss‐of‐function variants (LOF) when con-

sidering LOF in all transcripts and any transcript, respectively.

However, differences in the selection of PTV versus LOF variants,

choice of transcripts, frequency cut‐offs, and variant calling make an

unbiased comparison impossible.

To perform a sort of “validation” of our work on pathogenic variation

by linking it to a phenotype, we took advantage of the availability of

hypertensive status and blood pressure values for our cohort. As sug-

gested in Russo et al. (2018), we followed a burden‐based approach to

link pathogenic variation (PTV and DMG) to hypertension, an inter-

mediate phenotype associated with an increased risk of cardiovascular

disorders. Although the number of individuals affected by hypertension

in our sample was too low to discover new associations, we showed that

our results are consistent with known associations, thus indirectly vali-

dating our assessment of variant pathogenicity.

Previous studies (Karczewski et al., 2020; Lek et al., 2016) showed

that many genes are quite tolerant of variants causing loss‐of‐function.
As a consequence, PP variants in those genes are unlikely to actually

be pathogenic, thus explaining part of the burden of PP variants that

we observed in our and other healthy cohorts. When focusing on the

ACMG genes, our three classes of PP variants behave quite differ-

ently. The lower proportion of PTVs found in the ACMG genes shows

that the ACMG genes are, as a whole, less tolerant to PTVs than the

rest of the exome. In contrast, the enrichment of DMG and CLNPAT

may seem counter‐intuitive. In the case of DMG variants, which are

missense variants predicted to be deleterious, this is likely due to the

fact that the gene or some related feature (e.g., genetic position,

conservation score, etc.) is considered in the prediction producing a

positive bias in clinically relevant genes (missense variants themselves

are not enriched in the ACMG genes). In the case of CLNPAT, the

likely explanation is a greater interest within the clinical community in

the AMCG genes and thus a greater representation in ClinVar.

We found that 2.5% of Italian individuals carry PTVs in ACMG

genes. Different estimates for the frequency of loss‐of‐function var-

iants in the ACMG genes have been provided in other studies: 1% in

Olfson et al. (2015), 2.6%–4.9% in Shah et al. (2018) and 2% in Van

Hout et al. (2020). However, when comparing the individual PTV

burden in the whole exome, every estimate was computed differently;

thus, discrepancies between these values are likely to be due more to

methodological than biological reasons.

When investigating variants that could cause Mendelian diseases,

we were much more restrictive, considering only PTVs and manually

checking the genes, inheritance model, associated disease, and the

pathogenicity class. The variants we found were variants that, in the

presence of disease, would be diagnosed as causative in a clinical

setting. Unfortunately, we have been unable to validate these variants

or to confirm the disease status of the individuals carrying these

variants. Thus, there are three possible reasons for these individuals to

have been included in a healthy cohort: (i) the variant has been mis-

called and is not present; (ii) the variant, even though satisfying the

ACMG standard, is not actually pathogenic; or (iii) the phenotype was

undetected or unreported in the recruitment. While we cannot ex-

clude reason (i), it seems unlikely that it is the only relevant ex-

planation as these genotypes appear to be of high quality and we

expect that validation would confirm them. Reason (iii) is the most

likely explanation for the homozygous PTVs in the recessive genes

because they cause an adverse response to chemotherapy (DPYD), a

mild disease (FLG), and a muscle disease (PYGM) often diagnosed later

in life. As these individuals are included in the healthy subset of

gnomAD individuals, this shows that one cannot exclude the presence

of other phenotypes like these in public databases. On the contrary,

reason (iii) is less likely for heterozygous PTVs in haploinsufficient

dominant genes, such as the KAT6A gene, which is linked to evident

morphological features and mental retardation. Thus, for the variants

in KAT6A, PTCH1, and STXBP1, we suspect reason (ii) to be the more

likely explanation. This means that even with careful scrutiny, the

standard diagnostic criteria may still produce some false positives.

In conclusion, we believe large whole‐exome or even whole‐
genome sequencing data sets to be very relevant to many fields in

genetics, especially for highly structured populations like the Italian

one. They are also instrumental to a more comprehensive approach

to clinical genetics that uses population genetics as a lens to better
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understand the interplay between polymorphisms, genetic suscept-

ibility, and pathogenic variation. A great amount of whole‐exome,

clinical exome, and genome sequencing data is routinely produced in

Italy both for clinical and research purposes. Collecting it in a com-

prehensive Italian‐specific database, and comparing variant fre-

quencies with other population databases, would be a valuable

resource in many research and clinical contexts. With this in mind,

we make available our data set in aggregated form on the site http://

nigdb.cineca.it (under the name NIG‐ExIT), as a new reference for

genetic frequencies in Italy and its macro‐areas.
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