24 research outputs found

    Physical and Mental Fatigue Reduce Psychomotor Vigilance in Professional Football Players

    Get PDF
    Purpose: Professional football players experience both physical and mental fatigue (MF). The main aims of this randomized crossover study were to investigate the effect of MF on repeated-sprint ability (RSA) and the effects of both physical fatigue and MF on psychomotor vigilance. Methods: Seventeen male professional football players performed 10 maximal 20-m shuttle sprints interspaced by incomplete recovery (RSA test). Running speed, heart rate, brain oxygenation, and rating of perceived exertion were monitored during each sprint. The RSA test was preceded by either a 30-minute Stroop task to induce MF or by watching a documentary for 30 minutes (control [CON]) in a randomized counterbalanced order. Participants performed a psychomotor vigilance test at baseline, after the cognitive task (MF or CON), and after the RSA test. Results: Heart rate and rating of perceived exertion significantly increased, while running speed and brain oxygenation significantly decreased over the repeated sprints (P .001) with no significant differences between conditions. Response speed during the psychomotor vigilance test significantly declined after the Stroop task but not after CON (P = .001). Response speed during the psychomotor vigilance test declined after the RSA test in both conditions (P .001) and remained lower in the MF condition compared to CON (P = .012). Conclusions: MF does not reduce RSA. However, the results of this study suggest that physical fatigue and MF have negative and cumulative effects on psychomotor vigilance. Therefore, strategies to reduce both physical fatigue and MF should be implemented in professional football players

    Influence of the MCT1 rs1049434 on Indirect Muscle Disorders/Injuries in Elite Football Players

    Get PDF
    The aim of this study was to investigate the association between MCT1 rs1049434 polymorphism and indirect muscle injuries in elite football players. One hundred and seventy-three male elite Italian football players (age = 19.2 ± 5.3 years) were recruited from a first-league football club participating at the Official National Italian Football Championship (Serie A, Primavera, Allievi, Giovanissimi). The cohort was genotyped for the MCT1 rs1049434 polymorphism, and muscle injuries data were collected during the period of 2009-2014 (five football seasons).Genomic DNA was extracted using a buccal swab, and genotyping was performed using PCR method. Structural-mechanical injuries and functional muscle disorder were included in the acute indirect muscle injury group.Participants with the MCT1 AA (AA = 1.57 ± 3.07, n = 69) genotype exhibit significantly higher injury incidents compared to participants with the TT genotype (TT = 0.09 ± 0.25, n = 22, P = 0.04).The MCT1 rs1049434 polymorphism is associated with the incidence of muscle injuries in elite football players. We anticipate that the knowledge of athletes' genetic predisposition to sports-related injuries might aid in individualizing training programs

    Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers

    Get PDF
    The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from l-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by l-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals. This journal i

    Epidemiological study in young professional footballers: a prospective study of three consecutive seasons

    No full text

    Assessing the hyperthermic properties of magnetic heterostructures: the case of Gold-Iron Oxide composites.

    No full text
    Gold–iron oxide composites were obtained by in situ reduction of an Au(III) precursor by an organic reductant (either potassium citrate or tiopronin) in a dispersion of preformed iron oxide ultrasmall magnetic (USM) nanoparticles. X-ray diffraction, transmission electron microscopy, chemical analysis and mid-infrared spectroscopy show the successful deposition of gold domains on the preformed magnetic nanoparticles, and the occurrence of either citrate or tiopronin as surface coating. The potential of the USM@Au nanoheterostructures as heat mediators for therapy through magnetic fluid hyperthermia was determined by calorimetric measurements under sample irradiation by an alternating magnetic field with intensity and frequency within the safe values for biomedical use. The USM@Au composites showed to be active heat mediators for magnetic fluid hyperthermia, leading to a rapid increase in temperature under exposure to an alternating magnetic field even under the very mild experimental conditions adopted, and their potential was assessed by determining their specific absorption rate (SAR) and compared with the pure iron oxide nanoparticles. Calorimetric investigation of the synthesized nanostructures enabled us to point out the effect of different experimental conditions on the SAR value, which is to date the parameter used for the assessment of the hyperthermic efficiency

    Vitamin D receptor polymorphisms and musculoskeletal injuries in professional football players

    No full text
    The aim of the present study was to investigate the association between vitamin D receptor (VDR) gene polymorphisms and musculoskeletal injury (MI) in elite football players. In total, 54 male professional football players were recruited from an official Italian professional championship team between 2009 and 2013. The cohort was genotyped for the ApaI, BsmI and FokI polymorphisms and MI data were collected over four football seasons. No significant differences were identified among the genotypes in the incidence rates or severity of MI (P=0.254). In addition, no significant associations were observed between VDR polymorphisms and MI phenotypes (P=0.460). However, the results of the casewise multiple regression analysis indicated that the ApaI genotypes accounted for 18% of injury severity (P=0.002). Therefore, while the BsmI and FokI polymorphisms did not appear to be associated with the severity or incidence of MI, the ApaI genotypes may have influenced the severity of muscle injury in top-level football players

    Influence of the MCT1-T1470A polymorphism (rs1049434) on repeated sprint ability and blood lactate accumulation in elite football players: a pilot study

    No full text
    Purpose: The aim of this study is to investigate the influence of the MCT1 T1470A polymorphism (rs1049434) on repeated sprint ability (RSA) and lactate accumulation after RSA testing. Methods: Twenty-six elite Italian male football players (age: 17.7 ± 0.78 years; height: 179.2 ± 7.40 cm; weight: 72.1 ± 5.38 kg) performed RSA testing (6 Ă— 30-m sprints with an active recovery between sprints), and lactate measurements were obtained at 1, 3, 5, 7, and 10 min post-exercise. Genotyping for the MCT1 T1470A polymorphism was performed using PCR. Results: Genotype distributions were in Hardy–Weinberg equilibrium, being 42% wildtype (A/A), 46% heterozygotes (T/A), and 12% mutated homozygotes (T/T). Significant differences between genotypic groups were found in the two final sprint times of the RSA test. Under a dominant model, carriers of the major A-allele (Glu-490) in the dominant model showed a significantly lower sprint time compared to footballers with the T/T (Asp/Asp) genotype (5th Sprint time: A/A + T/A = 4.60 s vs TT = 4.97 s, 95% CI 0.07–0.67, p = 0.022; 6th Sprint: A/A + T/A = 4.56 s vs T/T = 4.87 s, 95% CI 0.05–0.57, p = 0.033). Conclusions: The T1470A (Glu490Asp) polymorphism of MCT1 was associated with RSA. Our findings suggest that the presence of the major A-allele (Glu-490) is favourable for RSA in football players
    corecore