13 research outputs found
Nipocalimab, an anti-FcRn monoclonal antibody, in participants with moderate to severe active rheumatoid arthritis and inadequate response or intolerance to anti-TNF therapy: results from the phase 2a IRIS-RA study
Objectives: To investigate the efficacy, safety, pharmacokinetics and pharmacodynamics of nipocalimab in participants with moderate to severe active rheumatoid arthritis (RA) and inadequate response or intolerance to ≥1 antitumour necrosis factor agent. Methods: In this phase 2a study, participants with RA seropositive for anticitrullinated protein antibodies (ACPA) or rheumatoid factors were randomised 3:2 to nipocalimab (15 mg/kg intravenously every 2 weeks) or placebo from Weeks 0 to 10. Efficacy endpoints (primary endpoint: change from baseline in Disease Activity Score 28 using C reactive protein (DAS28-CRP) at Week 12) and patient-reported outcomes (PROs) were assessed through Week 12. Safety, pharmacokinetics and pharmacodynamics were assessed through Week 18. Results: 53 participants were enrolled (nipocalimab/placebo, n=33/20). Although the primary endpoint did not reach statistical significance for nipocalimab versus placebo, a numerically higher change from baseline in DAS28-CRP at Week 12 was observed (least squares mean (95% CI): –1.03 (–1.66 to –0.40) vs –0.58 (–1.24 to 0.07)), with numerically higher improvements in all secondary efficacy outcomes and PROs. Serious adverse events were reported in three participants (burn infection, infusion-related reaction and deep vein thrombosis). Nipocalimab significantly and reversibly reduced serum immunoglobulin G, ACPA and circulating immune complex levels but not serum inflammatory markers, including CRP. ACPA reduction was associated with DAS28-CRP remission and 50% response rate in American College of Rheumatology (ACR) criteria; participants with a higher baseline ACPA had greater clinical improvement. Conclusions: Despite not achieving statistical significance in the primary endpoint, nipocalimab showed consistent, numerical efficacy benefits in participants with moderate to severe active RA, with greater benefit observed for participants with a higher baseline ACPA. Trial registration number: NCT04991753
RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p
RPC4046, A Novel Anti-interleukin-13 Antibody, Blocks IL-13 Binding to IL-13 α1 and α2 Receptors: A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation First-in-Human Study
<p><strong>Article full
text</strong></p>
<p><br>
The full text of this article can be found <a href="https://link.springer.com/article/10.1007/s12325-017-0525-8"><b>here</b>.</a><br>
<br>
<strong>Provide enhanced digital features for this article</strong><br>
If you are an author of this publication and would like to provide additional
enhanced digital features for your article then please contact <u>[email protected]</u>.<br>
<br>
The journal offers a range of additional features designed to increase
visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the
highest scientific standard and all features are marked as ‘peer reviewed’ to
ensure readers are aware that the content has been reviewed to the same level
as the articles they are being presented alongside. Moreover, all sponsorship
and disclosure information is included to provide complete transparency and
adherence to good publication practices. This ensures that however the content
is reached the reader has a full understanding of its origin. No fees are
charged for hosting additional open access content.<br>
<br>
Other enhanced features include, but are
not limited to:<br>
• Slide decks<br>
• Videos and animations<br>
• Audio abstracts<br>
• Audio slides<u></u></p
The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases
Three different classes of thiol-oxidoreductases that facilitate the formation of protein disulfide bonds have been identified. They are the Ero1 and SOX/ALR family members in eukaryotic cells, and the DsbB family members in prokaryotic cells. These enzymes transfer oxidizing potential to the proteins PDI or DsbA, which are responsible for directly introducing disulfide bonds into substrate proteins during oxidative protein folding in eukaryotes and prokaryotes, respectively. A comparison of the recent X-ray crystal structure of Ero1 with the previously solved structure of the SOX/ALR family member Erv2 reveals that, despite a lack of primary sequence homology between Ero1 and Erv2, the core catalytic domains of these two proteins share a remarkable structural similarity. Our search of the DsbB protein sequence for features found in the Ero1 and Erv2 structures leads us to propose that, in a fascinating example of structural convergence, the catalytic core of this integral membrane protein may resemble the soluble catalytic domain of Ero1 and Erv2. Our analysis of DsbB also identified two new groups of DsbB proteins that, based on sequence homology, may also possess a catalytic core similar in structure to the catalytic domains of Ero1 and Erv2