73 research outputs found

    Search of dark-matter axions in the microwave frequency range with full-wave modal techniques

    Get PDF
    Axions, originally proposed to solve the strong Charge-Parity problem of Quantum Chromo-Dynamics theory, emerge now as leading candidates of dark matter. In fact, the search of dark-matter axions in the microwave frequency range has been developed by different research groups during the last twenty years. In this demanding scenario, several microwave passive components (haloscopes) have been designed and fabricated for such axions detection based on the use of cavities and multi-cavities. From an electromagnetic point of view, comercial software (ANSFT HFSS, CST MICROWAVE STUDIO, etc ) has been employed for the design of different kind of haloscopes. In this work we propose to use the BI-RME 3D method (Boundary Integral – Resonant Mode Expansion) as an alternative to analyze the axion-photon coupling existing within an haloscope. This full-wave modal technique has provided interesting wide-band results for the design of new haloscopes

    A hydrogen beam to characterize the ASACUSA antihydrogen hyperfine spectrometer

    Full text link
    The antihydrogen programme of the ASACUSA collaboration at the antiproton decelerator of CERN focuses on Rabi-type measurements of the ground-state hyperfine splitting of antihydrogen for a test of the combined Charge-Parity-Time symmetry. The spectroscopy apparatus consists of a microwave cavity to drive hyperfine transitions and a superconducting sextupole magnet for quantum state analysis via Stern-Gerlach separation. However, the small production rates of antihydrogen forestall comprehensive performance studies on the spectroscopy apparatus. For this purpose a hydrogen source and detector have been developed which in conjunction with ASACUSA's hyperfine spectroscopy equipment form a complete Rabi experiment. We report on the formation of a cooled, polarized, and time modulated beam of atomic hydrogen and its detection using a quadrupole mass spectrometer and a lock-in amplification scheme. In addition key features of ASACUSA's hyperfine spectroscopy apparatus are discussed.

    Hyperfine spectroscopy of hydrogen and antihydrogen in ASACUSA

    Full text link
    The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise measurement of the antihydrogen ground-state hyperfine structure as a test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, undergoes Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector. In parallel measurements using a polarized hydrogen beam are being performed to commission the spectroscopy apparatus and to perform measurements of parameters of the Standard Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and progress of ASACUSA is presented.Comment: Proceedings of the 7th International Syposium on Symmetries in Subatomic Physics SSP2018, Aachen (Germany), 10 - 15 Jun 2018. Corrected error in Fig. 1, updated caption, add titles to reference

    First results on the search for chameleons with the KWISP detector at CAST

    Get PDF
    We report on a first measurement with a sensitive opto-mechanical force sensor designed for the direct detection of coupling of real chameleons to matter. These dark energy candidates could be produced in the Sun and stream unimpeded to Earth. The KWISP detector installed on the CAST axion search experiment at CERN looks for tiny displacements of a thin membrane caused by the mechanical effect of solar chameleons. The displacements are detected by a Michelson interferometer with a homodyne readout scheme. The sensor benefits from the focusing action of the ABRIXAS X-ray telescope installed at CAST, which increases the chameleon flux on the membrane. A mechanical chopper placed between the telescope output and the detector modulates the incoming chameleon stream. We present the results of the solar chameleon measurements taken at CAST in July 2017, setting an upper bound on the force acting on the membrane of 80pN at 95% confidence level. The detector is sensitive for direct coupling to matter 104 = ßm = 108, where the coupling to photons is locally bound to ß¿ = 1011

    Search for Dark Matter Axions with CAST-CAPP

    Full text link
    The CAST-CAPP axion haloscope, operating at CERN inside the CAST dipole magnet, has searched for axions in the 19.74 ÎŒ\mueV to 22.47 ÎŒ\mueV mass range. The detection concept follows the Sikivie haloscope principle, where Dark Matter axions convert into photons within a resonator immersed in a magnetic field. The CAST-CAPP resonator is an array of four individual rectangular cavities inserted in a strong dipole magnet, phase-matched to maximize the detection sensitivity. Here we report on the data acquired for 4124 h from 2019 to 2021. Each cavity is equipped with a fast frequency tuning mechanism of 10 MHz/min between 4.774 GHz and 5.434 GHz. In the present work, we exclude axion-photon couplings for virialized galactic axions down to gaγγ=8×10−14g_{a{\gamma}{\gamma}} = 8 \times {10^{-14}} GeV−1GeV^{-1} at the 90% confidence level. The here implemented phase-matching technique also allows for future large-scale upgrades.Comment: 24 pages, 5 figures, Published version available with Open Access at https://www.nature.com/articles/s41467-022-33913-

    Thin Film (High Temperature) Superconducting Radiofrequency Cavities for the Search of Axion Dark Matter

    Get PDF
    5 pages, 6 figures. v2: minor updates after referee comments, matches published version in IEEEThe axion is a hypothetical particle which is a candidate for cold dark matter. Haloscope experiments directly search for these particles in strong magnetic fields with RF cavities as detectors. The Relic Axion Detector Exploratory Setup (RADES) at CERN in particular is searching for axion dark matter in a mass range above 30 ÎŒ\mueV. The figure of merit of our detector depends linearly on the quality factor of the cavity and therefore we are researching the possibility of coating our cavities with different superconducting materials to increase the quality factor. Since the experiment operates in strong magnetic fields of 11 T and more, superconductors with high critical magnetic fields are necessary. Suitable materials for this application are for example REBa2_2Cu3_3O7−x_{7-x}, Nb3_3Sn or NbN. We designed a microwave cavity which resonates at around 9~GHz, with a geometry optimized to facilitate superconducting coating and designed to fit in the bore of available high-field accelerator magnets at CERN. Several prototypes of this cavity were coated with different superconducting materials, employing different coating techniques. These prototypes were characterized in strong magnetic fields at 4.2 K.This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730871 (ARIES-TNA). BD and JG acknowledge funding through the European Research Council under grant ERC-2018-StG-802836 (AxScale). We also acknowledge funding via the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) under project PID2019- 108122GB-C33, and the grant FPI BES-2017-079787 (under project FPA2016-76978-C3-2-P). Furthermore we acknowledge support from SuMaTe RTI2018-095853-B-C21 from MICINN co-financed by the European Regional Development Fund, Center of Excellence award Severo Ochoa CEX2019- 000917-S and CERN under Grant FCCGOV-CC-0208 (KE4947/ATS).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    • 

    corecore