18 research outputs found

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding Information: GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file : Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Torradoviruses

    No full text
    Torradoviruses are an example of a group of recently discovered plant viruses. The first description of Tomato torrado virus, now the type member of the newly established genus Torradovirus within the family Secoviridae, was published in 2007 and was quickly followed by findings of other torradoviruses, initially all on tomato. Their characterization led to the development of tools that allowed recognition of still other torradoviruses, only very recently found on non-tomato crops, which indicates these viruses have a much wider host range and diversity than previously believed. This review describes the characteristics of this newly emerged group of plant viruses. It looks in detail at taxonomic relationships and specific characteristics in their genomes and encoded proteins. Furthermore, it discusses their epidemiology, including host range, semipersistent transmission by whitefly vectors, and impact on diverse cropping systems

    Cobalamin status and its relation with depression, cognition and neuropathy in patients with type 2 diabetes mellitus using metformin

    No full text
    Aims: To investigate the associations of vitamin B12 (cobalamin and holotranscobalamin) status with depression, cognition and neuropathy in patients with type 2 diabetes using metformin. Methods: In an observational study, among 550 type 2 diabetes patients using metformin, cobalamin and holotranscobalamin (holoTCII) levels were measured at the annual diabetes checkup, and deficiencies were defined as <148 and <21 pmol/L, respectively. Depression and cognitive function were assessed with corresponding International Classification of Primary Care codes and questionnaires; neuropathy with medical record data and a questionnaire. Confounding variables were retrieved from medical records. Multivariable logistic and linear regressions were used with cobalamin status as independent variable; depression, cognition and neuropathy as dependent variables.Results: The mean duration of diabetes was 8.4 years (±5.8); mean duration of metformin use was 64.1 months (±43.2), with a mean metformin dose of 1,306 mg/day. A sufficient cobalamin level was independently associated with a decreased risk of depression (OR 0.42; 95 % CI 0.23–0.78) and better cognitive performance (β = 1.79; 95 % CI 0.07–3.52) adjusted for confounders. This indicates that cobalamin-deficient patients had a 2.4 times higher chance of depression and a 1.79 point lower cognitive performance score. HoloTCII was not associated with any outcome. Conclusions: Cobalamin deficiency was associated with an increased risk of depression and worse cognitive performance, while holoTCII was not. Screening for cobalamin deficiency may be warranted in diabetes patients using metformin. Physicians should consider a cobalamin deficiency in diabetes patients using metformin with a depression or cognitive decline

    Translating virome analyses to support biosecurity, on-farm management, and crop breeding

    No full text
    Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally

    Heterochromatin differentiation in holocentric chromosomes of Rhynchospora (Cyperaceae)

    No full text
    Holocentric chromosomes of six species of Rhynchospora, R. ciliata, R. pubera, R. riparia and R. barbata (2n = 10), R. nervosa (2n = 30) and R. globosa (2n = 36), were stained with CMA3/DAPI fluorochromes or treated with C-banding and sequentially stained with Giemsa or CMA3/DAPI. Variability in banding pattern was found among the species studied. Heterochromatin was observed on terminal and interstitial chromosome regions, indicating that the holocentric chromosomes of Rhynchospora show a heterochromatin distribution pattern similar to those plant monocentric chromosomes.<br>Cromossomos holocêntricos de seis espécies de Rhynchospora (R. ciliata, R. pubera, R. riparia e R. barbata (2n = 10), R. nervosa (2n = 30) and R. globosa (2n = 36)) foram corados com os fluorocromos CMA3/DAPI ou tratados para bandeamento C e seqüencialmente corados com Giemsa ou CMA3/DAPI. Variabilidade no padrão de bandas foi encontrada entre as espécies estudadas. A heterocromatina foi observada em regiões terminais e intersticiais dos cromossomos, indicando que os cromossomos holocêntricos de Rhynchospora mostram um padrão de distribuição de heterocromatina similar àqueles dos cromossomos monocêntricos de plantas

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer’s disease (rg=−0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
    corecore