99 research outputs found

    Are autistic traits in the general population stable across development?

    Get PDF
    There is accumulating evidence that autistic traits (AT) are on a continuum in the general population, with clinical autism representing the extreme end of a quantitative distribution. While the nature and severity of symptoms in clinical autism are known to persist over time, no study has examined the long-term stability of AT among typically developing toddlers. The current investigation measured AT in 360 males and 400 males from the general population close to two decades apart, using the Pervasive Developmental Disorder subscale of the Child Behavior Checklist in early childhood (M = 2.14 years; SD = 0.15), and the Autism-Spectrum Quotient in early adulthood (M = 19.50 years; SD = 0.70). Items from each scale were further divided into social (difficulties with social interaction and communication) and non-social (restricted and repetitive behaviours and interests) AT. The association between child and adult measurements of AT as well the influence of potentially confounding sociodemographic, antenatal and obstetric variables were assessed using Pearson's correlations and linear regression. For males, Total AT in early childhood were positively correlated with total AT (r = .16, p = .002) and social AT (r = .16, p = .002) in adulthood. There was also a positive correlation for males between social AT measured in early childhood and Total (r = .17, p = .001) and social AT (r = .16, p = .002) measured in adulthood. Correlations for non-social AT did not achieve significance in males. Furthermore, there was no significant longitudinal association in AT observed for males or females. Despite the constraints of using different measures and different raters at the two ages, this study found modest developmental stability of social AT from early childhood to adulthood in boys

    Underdiagnosis and referral bias of autism in ethnic minorities

    Get PDF
    This study examined (1) the distribution of ethnic minorities among children referred to autism institutions and (2) referral bias in pediatric assessment of autism in ethnic minorities. It showed that compared to the known community prevalence, ethnic minorities were under-represented among 712 children referred to autism institutions. In addition, pediatricians (n = 81) more often referred to autism when judging clinical vignettes of European majority cases (Dutch) than vignettes including non-European minority cases (Moroccan or Turkish). However, when asked explicitly for ratings of the probability of autism, the effect of ethnic background on autism diagnosis disappeared. We conclude that the use of structured ratings may decrease the likelihood of ethnic bias in diagnostic decisions of autis

    A locus at 19q13.31 significantly reduces the <em>ApoE</em> Δ4 risk for Alzheimer\u27s Disease in African Ancestry

    Get PDF
    Copyright: \ua9 2022 Rajabli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. African descent populations have a lower Alzheimer disease risk from ApoE Δ4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE Δ4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE Δ4 allele and the SNP rs10423769_A allele, (ÎČ = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (ÎČ = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (ÎČ = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the “protective” direction but failing to pass a 0.05 significance threshold (ÎČ = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE Δ4/Δ4 carriers lacking the A allele to 2.1 for ApoE Δ4/Δ4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE Δ4 for developing Alzheimer disease. The mechanism of the interaction with ApoEΔ4 is not known but suggests a novel mechanism for reducing the risk for Δ4 carriers opening the possibility for potential ancestry-specific therapeutic intervention

    Aggression in Low Functioning Children and Adolescents with Autistic Disorder

    Get PDF
    BACKGROUND: Parents, caregivers and mental health professionals have often reported violence and aggression in children or adolescents with autistic disorder. However, most of these observations derived from anecdotal reports, and studies on frequency and characterization of aggression in autism remain limited. Our objective was to better characterize and understand the different types of aggressive behaviors displayed by a large group of individuals with autism in different observational situations. METHODOLOGY/FINDINGS: The study was conducted on 74 children and adolescents with autism and 115 typically developing control individuals matched for sex, age and pubertal stage. Other-Injurious Behaviors (OIB) were assessed in three observational situations (parents at home, two caregivers at day-care, a nurse and a child psychiatrist during blood drawing) using validated scales. The frequency of OIB was significantly higher in individuals with autism compared to typically developing control individuals during the blood drawing (23% vs. 0%, P<0 .01). The parents observed significantly less OIB in their children than caregivers (34% vs. 58%, P<0.05). In addition, the most frequent concurrent behaviors occurring just before the appearance of OIB in individuals with autism were anxiety-related behaviors and excitation according to the parental as well as the caregiver observation. CONCLUSIONS/SIGNIFICANCE: The results suggest that in a stressful situation, such as the blood drawing, individuals with autism release their stress through behaviors such as OIB, whereas typically developing individuals regulate and express their stress through cognitive skills such as mental coping strategies, symbolization skills with representation and anticipation of the stressful situation, social interaction and verbal or non-verbal communication. The findings underline also the key role of the environment in assessing OIB and developing therapeutic perspectives, with an individual who modulates his/her behavior according to the environment, and an environment that perceives this behavior and reacts to it with different tolerance thresholds according to the observers

    Socioeconomic Inequality in the Prevalence of Autism Spectrum Disorder: Evidence from a U.S. Cross-Sectional Study

    Get PDF
    This study was designed to evaluate the hypothesis that the prevalence of autism spectrum disorder (ASD) among children in the United States is positively associated with socioeconomic status (SES).A cross-sectional study was implemented with data from the Autism and Developmental Disabilities Monitoring Network, a multiple source surveillance system that incorporates data from educational and health care sources to determine the number of 8-year-old children with ASD among defined populations. For the years 2002 and 2004, there were 3,680 children with ASD among a population of 557,689 8-year-old children. Area-level census SES indicators were used to compute ASD prevalence by SES tertiles of the population.Prevalence increased with increasing SES in a dose-response manner, with prevalence ratios relative to medium SES of 0.70 (95% confidence interval [CI] 0.64, 0.76) for low SES, and of 1.25 (95% CI 1.16, 1.35) for high SES, (P<0.001). Significant SES gradients were observed for children with and without a pre-existing ASD diagnosis, and in analyses stratified by gender, race/ethnicity, and surveillance data source. The SES gradient was significantly stronger in children with a pre-existing diagnosis than in those meeting criteria for ASD but with no previous record of an ASD diagnosis (p<0.001), and was not present in children with co-occurring ASD and intellectual disability.The stronger SES gradient in ASD prevalence in children with versus without a pre-existing ASD diagnosis points to potential ascertainment or diagnostic bias and to the possibility of SES disparity in access to services for children with autism. Further research is needed to confirm and understand the sources of this disparity so that policy implications can be drawn. Consideration should also be given to the possibility that there may be causal mechanisms or confounding factors associated with both high SES and vulnerability to ASD

    Investigation of autism and GABA receptor subunit genes in multiple ethnic groups

    Get PDF
    Autism is a neurodevelopmental disorder of complex genetics, characterized by impairment in social interaction and communication, as well as repetitive behavior. Multiple lines of evidence, including alterations in levels of GABA and GABA receptors in autistic patients, indicate that the GABAergic system, which is responsible for synaptic inhibition in the adult brain, may be involved in autism. Previous studies in our lab indicated association of noncoding single nucleotide polymorphisms (SNPs) within a GABA receptor subunit gene on chromosome 4, GABRA4, and interaction between SNPs in GABRA4 and GABRB1 (also on chromosome 4), within Caucasian autism patients. Studies of genetic variation in African-American autism families are rare. Analysis of 557 Caucasian and an independent population of 54 African-American families with 35 SNPs within GABRB1 and GABRA4 strengthened the evidence for involvement of GABRA4 in autism risk in Caucasians (rs17599165, p=0.0015; rs1912960, p=0.0073; and rs17599416, p=0.0040) and gave evidence of significant association in African-Americans (rs2280073, p=0.0287 and rs16859788, p=0.0253). The GABRA4 and GABRB1 interaction was also confirmed in the Caucasian dataset (most significant pair, rs1912960 and rs2351299; p=0.004). Analysis of the subset of families with a positive history of seizure activity in at least one autism patient revealed no association to GABRA4; however, three SNPs within GABRB1 showed significant allelic association; rs2351299 (p=0.0163), rs4482737 (p=0.0339), and rs3832300 (p=0.0253). These results confirmed our earlier findings, indicating GABRA4 and GABRB1 as genes contributing to autism susceptibility, extending the effect to multiple ethnic groups and suggesting seizures as a stratifying phenotype

    Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders.</p> <p>Methods</p> <p>We describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR).</p> <p>Results</p> <p>Our analysis revealed a genomic deletion containing the oxytocin receptor gene, <it>OXTR </it>(MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The proband's affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate <it>OXTR </it>expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that <it>OXTR </it>mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls.</p> <p>Conclusion</p> <p>Together, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of <it>OXTR </it>in the development of the disorder.</p> <p>See the related commentary by Gurrieri and Neri: <url>http://www.biomedcentral.com/1741-7015/7/63</url></p

    Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates

    Get PDF
    BACKGROUND: Autism is a neurobehavioral spectrum of phenotypes characterized by deficits in the development of language and social relationships and patterns of repetitive, rigid and compulsive behaviors. Twin and family studies point to a significant genetic etiology, and several groups have performed genomic linkage screens to identify susceptibility loci. METHODS: We performed a genome-wide linkage screen in 158 combined Tufts, Vanderbilt and AGRE (Autism Genetics Research Exchange) multiplex autism families using parametric and nonparametric methods with a categorical autism diagnosis to identify loci of main effect. Hypothesizing interdependence of genetic risk factors prompted us to perform exploratory studies applying the Ordered-Subset Analysis (OSA) approach using LOD scores as the trait covariate for ranking families. We employed OSA to test for interlocus correlations between loci with LOD scores ≄1.5, and empirically determined significance of linkage in optimal OSA subsets using permutation testing. Exploring phenotypic correlates as the basis for linkage increases involved comparison of mean scores for quantitative trait-based subsets of autism between optimal subsets and the remaining families. RESULTS: A genome-wide screen for autism loci identified the best evidence for linkage to 17q11.2 and 19p13, with maximum multipoint heterogeneity LOD scores of 2.9 and 2.6, respectively. Suggestive linkage (LOD scores ≄1.5) at other loci included 3p, 6q, 7q, 12p, and 16p. OSA revealed positive correlations of linkage between the 19p locus and 17q, between 19p and 6q, and between 7q and 5p. While potential phenotypic correlates for these findings were not identified for the chromosome 7/5 combination, differences indicating more rapid achievement of "developmental milestones" was apparent in the chromosome 19 OSA-defined subsets for 17q and 6q. OSA was used to test the hypothesis that 19p linkage involved more rapid achievement of these milestones and it revealed significantly increased LOD* scores at 19p13. CONCLUSIONS: Our results further support 19p13 as harboring an autism susceptibility locus, confirm other linkage findings at 17q11.2, and demonstrate the need to analyze more discreet trait-based subsets of complex phenotypes to improve ability to detect genetic effects

    Mapping autism risk loci using genetic linkage and chromosomal rearrangements.

    Get PDF
    International audienceAutism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs
    • 

    corecore