713 research outputs found

    Separable states can be used to distribute entanglement

    Get PDF
    We show that no entanglement is necessary to distribute entanglement; that is, two distant particles can be entangled by sending a third particle that is never entangled with the other two. Similarly, two particles can become entangled by continuous interaction with a highly mixed mediating particle that never itself becomes entangled. We also consider analogous properties of completely positive maps, in which the composition of two separable maps can create entanglement.Comment: 4 pages, 2 figures. Slight modification

    Area law for fixed points of rapidly mixing dissipative quantum systems

    Get PDF
    We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure, or the system is frustration free.Comment: 17 pages, 1 figure. Final versio

    Magnetic field control of cycloidal domains and electric polarization in multiferroic BiFeO3_3

    Full text link
    The magnetic field induced rearrangement of the cycloidal spin structure in ferroelectric mono-domain single crystals of the room-temperature multiferroic BiFeO3_3 is studied using small-angle neutron scattering (SANS). The cycloid propagation vectors are observed to rotate when magnetic fields applied perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value of \sim5\,T. In light of these experimental results, a phenomenological model is proposed that captures the rearrangement of the cycloidal domains, and we revisit the microscopic origin of the magnetoelectric effect. A new coupling between the magnetic anisotropy and the polarization is proposed that explains the recently discovered magnetoelectric polarization to the rhombohedral axis

    Quasi-specular albedo of cold neutrons from powder of nanoparticles

    Full text link
    We predicted and observed for the first time the quasi-specular albedo of cold neutrons at small incidence angles from a powder of nanoparticles. This albedo (reflection) is due to multiple neutron small-angle scattering. The reflection angle as well as the half-width of angular distribution of reflected neutrons is approximately equal to the incidence angle. The measured reflection probability was equal to ~30% within the detector angular size that corresponds to 40-50% total calculated probability of quasi-specular reflection

    Separable states to distribute entanglement

    Full text link
    It was shown that two distant particles can be entangled by sending a third particle never entangled with the other two [T. S. Cubitt et al., Phys. Rev. Lett. 91, 037902 (2003)]. In this paper, we investigate a class of three-qubit separable states to distribute entanglement by the same way, and calculate the maximal amount of entanglement which two particles of separable states in the class can have after applying the way.Comment: 4 pages, no figures, Revised argumen

    Fundamental limitations in the purifications of tensor networks

    Get PDF
    We show a fundamental limitation in the description of quantum many-body mixed states with tensor networks in purification form. Namely, we show that there exist mixed states which can be represented as a translationally invariant (TI) matrix product density operator (MPDO) valid for all system sizes, but for which there does not exist a TI purification valid for all system sizes. The proof is based on an undecidable problem and on the uniqueness of canonical forms of matrix product states. The result also holds for classical states.Comment: v1: 11 pages, 1 figure. v2: very minor changes. About to appear in Journal of Mathematical Physic

    Effect of an electric field on a floating lipid bilayer: a neutron reflectivity study

    Full text link
    We present here a neutron reflectivity study of the influence of an alternative electric field on a supported phospholipid double bilayer. We report for the first time a reproducible increase of the fluctuation amplitude leading to the complete unbinding of the floating bilayer. Results are in good agreement with a semi-quantitative interpretation in terms of negative electrostatic surface tension.Comment: 12 pages, 7 figures, 1 table accepted for publication in European Physical Journal E Replaced with with correct bibliograph

    Extracting dynamical equations from experimental data is NP-hard

    Get PDF
    The behavior of any physical system is governed by its underlying dynamical equations. Much of physics is concerned with discovering these dynamical equations and understanding their consequences. In this work, we show that, remarkably, identifying the underlying dynamical equation from any amount of experimental data, however precise, is a provably computationally hard problem (it is NP-hard), both for classical and quantum mechanical systems. As a by-product of this work, we give complexity-theoretic answers to both the quantum and classical embedding problems, two long-standing open problems in mathematics (the classical problem, in particular, dating back over 70 years).Comment: For mathematical details, see arXiv:0908.2128[math-ph]. v2: final version, accepted in Phys. Rev. Let
    corecore