284 research outputs found

    Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    Full text link
    The K2-33 planetary system hosts one transiting ~5 R_E planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 M_J. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M_E, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M_E, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M_E.Comment: 11 pages, 7 figure

    A grid of upper atmosphere models for 1--40 MEARTH planets: application to CoRoT-7 b and HD219134 b,c

    Full text link
    There is growing observational and theoretical evidence suggesting that atmospheric escape is a key driver of planetary evolution. Commonly, planetary evolution models employ simple analytic formulae (e.g., energy limited escape) that are often inaccurate, and more detailed physical models of atmospheric loss usually only give snapshots of an atmosphere's structure and are difficult to use for evolutionary studies. To overcome this problem, we upgrade and employ an already existing upper atmosphere hydrodynamic code to produce a large grid of about 7000 models covering planets with masses 1 - 39 Earth mass with hydrogen-dominated atmospheres and orbiting late-type stars. The modeled planets have equilibrium temperatures ranging between 300 and 2000 K. For each considered stellar mass, we account for three different values of the high-energy stellar flux (i.e., low, moderate, and high activity). For each computed model, we derive the atmospheric temperature, number density, bulk velocity, X-ray and EUV (XUV) volume heating rates, and abundance of the considered species as a function of distance from the planetary center. From these quantities, we estimate the positions of the maximum dissociation and ionisation, the mass-loss rate, and the effective radius of the XUV absorption. We show that our results are in good agreement with previously published studies employing similar codes. We further present an interpolation routine capable to extract the modelling output parameters for any planet lying within the grid boundaries. We use the grid to identify the connection between the system parameters and the resulting atmospheric properties. We finally apply the grid and the interpolation routine to estimate atmospheric evolutionary tracks for the close-in, high-density planets CoRoT-7 b and HD219134 b,c...Comment: 21 pages, 4 Tables, 15 Figure

    The Kepler-11 system: evolution of the stellar high-energy emission and {initial planetary} atmospheric mass fractions

    Full text link
    The atmospheres of close-in planets are strongly influenced by mass loss driven by the high-energy (X-ray and extreme ultraviolet, EUV) irradiation of the host star, particularly during the early stages of evolution. We recently developed a framework to exploit this connection and enable us to recover the past evolution of the stellar high-energy emission from the present-day properties of its planets, if the latter retains some remnants of their primordial hydrogen-dominated atmospheres. Furthermore, the framework can also provide constraints on planetary initial atmospheric mass fractions. The constraints on the output parameters improve when more planets can be simultaneously analysed. This makes the Kepler-11 system, which hosts six planets with bulk densities between 0.66 and 2.45g cm^{-3}, an ideal target. Our results indicate that the star has likely evolved as a slow rotator (slower than 85\% of the stars with similar masses), corresponding to a high-energy emission at 150 Myr of between 1-10 times that of the current Sun. We also constrain the initial atmospheric mass fractions for the planets, obtaining a lower limit of 4.1% for planet c, a range of 3.7-5.3% for planet d, a range of 11.1-14% for planet e, a range of 1-15.6% for planet f, and a range of 4.7-8.7% for planet g assuming a disc dispersal time of 1 Myr. For planet b, the range remains poorly constrained. Our framework also suggests slightly higher masses for planets b, c, and f than have been suggested based on transit timing variation measurements. We coupled our results with published planet atmosphere accretion models to obtain a temperature (at 0.25 AU, the location of planet f) and dispersal time of the protoplanetary disc of 550 K and 1 Myr, although these results may be affected by inconsistencies in the adopted system parameters.Comment: 8 pages, 3 figure

    Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres

    Get PDF
    The dinoflagellate family Symbiodiniaceae comprises numerous genera and species with large differences in diversity, ecology and geographic distribution. An evolutionarily divergent lineage common in temperate symbiotic cnidarians and designated in the literature by several informal names including ‘temperate–A’, AI, Phylotype A® (A-prime) and ‘Mediterranean A’, is here assigned to the genus Philozoon. This genus was proposed by Geddes (1882) in one of the earliest papers that recognized ‘yellow cells’ as distinct biological entities separate from their animal and protist hosts. Using phylogenetic data from nuclear (rDNA), chloroplast (cp23S) and mitochondrial genes (cob and cox1), as well as morphology (cell size), ecological traits (host affinity) and geographic distributions, we emend the genus Philozoon Geddes and two of its species, P. medusarum and P. actiniarum, and describe six new species. Each symbiont species exhibits high host fidelity for particular species of sea anemone, soft coral, stony coral and a rhizostome jellyfish. Philozoon is most closely related to Symbiodinium (formerly Clade A), but, unlike its tropical counterpart, occurs in hosts in shallow temperate marine habitats in northern and southern hemispheres including the Mediterranean Sea, north-eastern Atlantic Ocean, eastern Australia, New Zealand and Chile. The existence of a species-diverse lineage adapted to cnidarian hosts living in high latitude habitats with inherently wide fluctuations in temperature calls further attention to the ecological and biogeographic reach of the Symbiodiniaceae

    Baseline Configuration of the Cryogenic System for the International Linear Collider

    Get PDF
    The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability

    Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program

    Get PDF
    The James Webb Space Telescope will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and its larger collecting area, spectral coverage, and spectral resolution compared to existing space-based facilities. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. In this article, we describe a prefatory JWST Early Release Science (ERS) program that focuses on testing specific observing modes to quickly give the community the data and experience it needs to plan more efficient and successful future transiting exoplanet characterization programs. We propose a multi-pronged approach wherein one aspect of the program focuses on observing transits of a single target with all of the recommended observing modes to identify and understand potential systematics, compare transmission spectra at overlapping and neighboring wavelength regions, confirm throughputs, and determine overall performances. In our search for transiting exoplanets that are well suited to achieving these goals, we identify 12 objects (dubbed "community targets") that meet our defined criteria. Currently, the most favorable target is WASP-62b because of its large predicted signal size, relatively bright host star, and location in JWST's continuous viewing zone. Since most of the community targets do not have well-characterized atmospheres, we recommend initiating preparatory observing programs to determine the presence of obscuring clouds/hazes within their atmospheres. Measurable spectroscopic features are needed to establish the optimal resolution and wavelength regions for exoplanet characterization. Other initiatives from our proposed ERS program include testing the instrument brightness limits and performing phase-curve observations.(Abridged)Comment: This is a white paper that originated from an open discussion at the Enabling Transiting Exoplanet Science with JWST workshop held November 16 - 18, 2015 at STScI (http://www.stsci.edu/jwst/science/exoplanets). Accepted for publication in PAS

    Cytisine versus varenicline for smoking cessation in New Zealand indigenous Māori: a randomized controlled trial

    Get PDF
    © 2021 The Authors. Aim To determine whether cytisine was at least as effective as varenicline in supporting smoking abstinence for ≄ 6 months in New Zealand indigenous Māori or whānau (extended-family) of Māori, given the high smoking prevalence in this population. Design Pragmatic, open-label, randomized, community-based non-inferiority trial. Setting Bay of Plenty, Tokoroa and Lakes District Health Board regions of New Zealand. Participants Adult daily smokers who identified as Māori or whānau of Māori, were motivated to quit in the next 2 weeks, were aged ≄ 18 years and were eligible for subsidized varenicline. Recruitment used multi-media advertising. Interventions A total of 679 people were randomly assigned (1 : 1) to receive a prescription for 12 weeks of cytisine or varenicline, plus low-intensity cessation behavioural support from the prescribing doctor and community stop-smoking services or a research assistant. Day 5 of treatment was the designated quit date. Measurements The primary outcome was carbon monoxide-verified continuous abstinence at 6 months, analysed as intention-to-treat (with multiple imputation for missing data). Secondary outcomes measured at 1, 3, 6 and 12 months post-quit date included: self-reported continuous abstinence, 7-day point prevalence abstinence, cigarettes per day, time to (re)lapse, adverse events, treatment adherence/compliance and acceptability, nicotine withdrawal/urge to smoke and health-care utilization/health-related quality of life. Findings Verified continuous abstinence rates at 6 months post-quit date were 12.1% (41 of 337) for cytisine versus 7.9% (27 of 342) for varenicline [risk difference 4.29%, 95% confidence interval (CI) = –0.22 to 8.79; relative risk 1.55; 95% CI = 0.97–2.46]. Sensitivity analyses confirmed that the findings were robust. Self-reported adverse events over 6 months occurred significantly more frequently in the varenicline group (cytisine: 313 events in 111 participants; varenicline: 509 events in 138 participants, incidence rate ratio 0.56, 95% CI = 0.49–0.65, P < 0.001) compared with the cytisine group. Common adverse events were headache, nausea and difficulty sleeping. Conclusion A randomized controlled trial found that cytisine was at least as effective as varenicline at supporting smoking abstinence in New Zealand indigenous Māori or whānau (extended-family) of Māori, with significantly fewer adverse events.Health Research Council of New Zealand. Grant Number: 16/07

    Suppressed Far-UV stellar activity and low planetary mass-loss in the WASP-18 system

    Get PDF
    WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (Râ€ČHK activity parameter lies slightly below the basal level; there is no significant time-variability in the log Râ€ČHK value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of HST aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B − V) ≈ 0.01mag) and then the ISM column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star-planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s−1 cm−2. We employ the rescaled XUV solar fluxes to model of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10−20MJ Gyr−1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape
    • 

    corecore