1,068 research outputs found

    A study on temporal segmentation strategies for extracting common spatial patterns for brain computer interfacing

    Get PDF
    Brain computer interfaces (BCI) create a new approach to human computer communication, allowing the user to control a system simply by performing mental tasks such as motor imagery. This paper proposes and analyses different strategies for time segmentation in extracting common spatial patterns of the brain signals associated to these tasks leading to an improvement of BCI performance

    Wavelet design by means of multi-objective GAs for motor imagery EEG analysis

    Get PDF
    Wavelet-based analysis has been broadly used in the study of brain-computer interfaces (BCI), but in most cases these wavelet functions have not been designed taking into account the requirements of this field. In this study we propose a method to automatically generate wavelet-like functions by means of genetic algorithms. Results strongly indicate that it is possible to generate (evolve) wavelet functions that improve the classification accuracy compared to other well-known wavelets (e.g. Daubechies and Coiflets)

    Nucleation of breathers via stochastic resonance in nonlinear lattices

    Get PDF
    By applying a staggered driving force in a prototypical discrete model with a quartic nonlinearity, we demonstrate the spontaneous formation and destruction of discrete breathers with a selected frequency due to thermal fluctuations. The phenomenon exhibits the striking features of stochastic resonance (SR): a nonmonotonic behavior as noise is increased and breather generation under subthreshold conditions. The corresponding peak is associated with a matching between the external driving frequency and the breather frequency at the average energy given by ambient temperature.Comment: Added references, figure 5 modified to include new dat

    Simulation of a solar funnel cooker using MATLAB

    Get PDF
    A software for the calculation of the radiation heat transfer in solar funnel cookers by means of the radiosity method has been developed in Matlab. The software has been used to study a folding solar cooker. The cooker geometry is discretized using a triangular mesh where a piecewise constant approximation is assumed for the radiosity function. Form factors, including self-occlusions, are calculated by properly refining the triangular mesh. The concentration factor of the solar cooker is estimated as a function of its position and orientation with respect to that of the Sun.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Relativistic Equilibrium Distribution by Relative Entropy Maximization

    Full text link
    The equilibrium state of a relativistic gas has been calculated based on the maximum entropy principle. Though the relativistic equilibrium state was long believed to be the Juttner distribution, a number of papers have been published in recent years proposing alternative equilibrium states. However, some of these papers do not pay enough attention to the covariance of distribution functions, resulting confusion in equilibrium states. Starting from a fully covariant expression to avoid this confusion, it has been shown in the present paper that the Juttner distribution is the maximum entropy state if we assume the Lorentz symmetry.Comment: Six pages, no figure

    High-frequency effects in the FitzHugh-Nagumo neuron model

    Get PDF
    The effect of a high-frequency signal on the FitzHugh-Nagumo excitable model is analyzed. We show that the firing rate is diminished as the ratio of the high-frequency amplitude to its frequency is increased. Moreover, it is demonstrated that the excitable character of the system, and consequently the firing activity, is suppressed for ratios above a given threshold value. In addition, we show that the vibrational resonance phenomenon turns up for sufficiently large noise strength values.Comment: 4 pages, 4 figures (to appear in Physical Review E

    Avoided Crossing and sub-Fourier-sensitivity in Driven Quantum Systems

    Get PDF
    The response of a linear system to an external perturbation is governed by the Fourier limit, with the inverse of the interaction time constituting a lower limit for the system bandwidth. This does not hold for nonlinear systems, which can thus exhibit sub-Fourier-behavior. The present Letter identifies a mechanism for sub-Fourier-sensitivity in driven quantum systems, which relies on avoided crossing between Floquet states. Features up to three orders of magnitude finer than the Fourier limit are presented.Ministerio de Economía y Competitividad of Spain, Grant No. FIS2016-80244-

    Thermal equilibrium and statistical thermometers in special relativity

    Get PDF
    There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Juettner function as well as modifications thereof. Here, we report results from fully relativistic one-dimensional (1D) molecular dynamics (MD) simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Juettner distribution. Moreover, our simulations illustrate that the concept of 'thermal equilibrium' extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that 'temperature' can be statistically defined and measured in an observer frame independent way.Comment: version accepted for publication (5 pages), part of the introduction modified, new figures, additional reference

    Electromagnetic behaviour and thermal stability of a conduction-cooled, no-insulated 2G-HTS coil at intermediate temperatures

    Get PDF
    The electromagnetic and thermal properties of a double pancake coil made of second generation high temperature superconductor, 2G-HTS, have been studied. The coil was wound with no-insulation between turns (NI coil) and was later impregnated with epoxy resin and glued to a copper support plate. The coil was thermally anchored to the cryocooler cold finger and cooled by conduction. After several thermal cycles no degradation of its superconducting properties was observed. The coil was operated under high vacuum and high currents (up to 400 A in steady conditions) at different temperatures in the range between 5 K and 77 K, with special focus on the analysis above 30 K. The charge and discharge characteristics, and the experimentally measured and numerically estimated critical currents, have been studied. The different loss contributions during current ramp and the thermal contact conductance between different parts of the double pancake coil have been measured. The implications of these two factors on the thermal stability and the behaviour of the whole cryogenic system are discussed
    • …
    corecore