170 research outputs found

    Diseño e implementación de nuevas tecnologías basadas en visión artificial para la inspección no destructiva de la calidad de fruta en campo y mínimamente procesada

    Full text link
    Esta tesis trata de avanzar en sistemas de visión por computador aplicados a la inspección automática de la calidad de frutas y verduras en dos entornos en los que hasta la fecha no se ha trabajado en profundidad como son la inspección en campo antes de la recepción de la fruta por la central hortofrutícola y la inspección automática de la calidad de fruta procesada. Se pretende así rellenar un hueco importante en la aplicación de la visión por computador como una herramienta al servicio del sector en la inspección de frutas y verduras. El desarrollo de técnicas de visión por computador en la inspección de la calidad de los productos agrícolas se debe a la necesidad de encontrar una alternativa a los métodos de inspección manual tradicionales para eliminar el contacto con el producto, aumentar la fiabilidad y objetividad, introducir flexibilidad a las líneas de confección e incrementar la productividad y competitividad de nuestras empresas. Esta tecnología está ampliamente extendida para la inspección de fruta en fresco en almacenes de confección pero, sin embargo, todavía no se ha aplicado en campo por las dificultades técnicas que conlleva este entorno, y tampoco en el sector de la fruta mínimamente procesada, debido a la fragilidad y dificultad de manipulación del producto, la complejidad de la inspección y el relativo menor valor económico respecto de la fruta en fresco. En esta tesis se aborda, por una parte, la creación de un sistema de visión por computador instalado en una plataforma de asistencia a la recolección de cítricos sobre la que se analiza la fruta a la vez que se recolecta y se clasifica en diversas categorías en función de su color, tamaño o calidad (presencia de defectos externos). Los mayores problemas del trabajo en campo se refieren a una iluminación inestable, movimientos y vibraciones, energía eléctrica limitada o efectos de la intemperie. Para ello es necesario diseñar un sistema de visión por computador compacto, robusto, rápido y muy efiCubero García, S. (2012). Diseño e implementación de nuevas tecnologías basadas en visión artificial para la inspección no destructiva de la calidad de fruta en campo y mínimamente procesada [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15999Palanci

    Nuevas tecnologías para la preselección automática de cítricos en el campo

    Full text link
    El trabajo de esta tesina aborda el desarrollo de un sistema de inspección automática para el análisis de la calidad de los cítricos en línea mediante visión por computador. Este sistema debe ser capaz de inspeccionar y clasificar la fruta en tiempo real en tres categorías diferentes, trabajando en condiciones de campo sobre una maquina en movimiento, atendiendo a parámetros de color y a estimaciones sobre la presencia de daños en su piel extraídas a partir del análisis de las imágenes.Cubero García, S. (2009). Nuevas tecnologías para la preselección automática de cítricos en el campo. Universitat Politècnica de València. http://hdl.handle.net/10251/59047Archivo delegad

    Genetic Diversity in Rosa as Revealed by RAPDs

    Get PDF
    We aim to study the variability within genus Rosa. To accomplish this we have analyzed a plant material collection (109 accessions) including all sections but one, as well as many intermediate forms and hybrids. We also aim to study the consistency of the groups considered within section Caninae (‘caninae’, ‘rubiginosa’ and ‘tomentosa’) as well as of the subgenus Hulthemia. A dendrogram was constructed based on RAPDs data. The variability found in the dendrogram was discussed according to sectional status and geographic origin. Our results indicate that there is no clear distinction between Caninae groups when many intermediate forms are considered. Besides, the subgenus Hulthemia seems to merit just a sectional status as proposed by other authors for other subgenus. The heterogeneity found in the dendrogram with respect to sectional status suggests the lack of clear reproductive barriers as is common with long lived woody perennial plants. Sect. Cassiorhodon may be considered as the Type of the genus since it shows the widest geographical distribution, the widest crossing ability within the Genus and it appears in most groups of the dendrogram suggesting to be the most representative Section

    Decoupled DC-Link capacitor voltage control of DC-AC multilevel multileg converters

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper studies the coupling between the capacitor voltage control loops of diode-clamped (or functionally equivalent) multilevel multileg (multiphase) dc-ac converters. From a complete model of the plant revealing the coupling, a simple approach consisting in multiplying the vector of control commands by a constant matrix is proposed to decouple the control problem and achieve a better controller performance. Simulation and experimental results are presented to prove the superior performance of the proposed decoupled control.Postprint (author's final draft

    Xf-Rovim. A Field Robot to Detect Olive Trees Infected by Xylella Fastidiosa Using Proximal Sensing

    Full text link
    [EN] The use of remote sensing to map the distribution of plant diseases has evolved considerably over the last three decades and can be performed at different scales, depending on the area to be monitored, as well as the spatial and spectral resolution required. This work describes the development of a small low-cost field robot (Remotely Operated Vehicle for Infection Monitoring in orchards, XF-ROVIM), which is intended to be a flexible solution for early detection of Xylella fastidiosa (X. fastidiosa) in olive groves at plant to leaf level. The robot is remotely driven and fitted with different sensing equipment to capture thermal, spectral and structural information about the plants. Taking into account the height of the olive trees inspected, the design includes a platform that can raise the cameras to adapt the height of the sensors to a maximum of 200 cm. The robot was tested in an olive grove (4 ha) potentially infected by X. fastidiosa in the region of Apulia, southern Italy. The tests were focused on investigating the reliability of the mechanical and electronic solutions developed as well as the capability of the sensors to obtain accurate data. The four sides of all trees in the crop were inspected by travelling along the rows in both directions, showing that it could be easily adaptable to other crops. XF-ROVIM was capable of inspecting the whole field continuously, capturing geolocated spectral information and the structure of the trees for later comparison with the in situ observations.This work was partially supported by funding from the European Union's Horizon 2020 research and innovation programme under grant agreement 727987 Xylella Fastidiosa Active Containment Through a multidisciplinary-Oriented Research Strategy (XF-ACTORS).Rey, B.; Aleixos Borrás, MN.; Cubero-García, S.; Blasco Ivars, J. (2019). Xf-Rovim. A Field Robot to Detect Olive Trees Infected by Xylella Fastidiosa Using Proximal Sensing. Remote Sensing. 11(3). https://doi.org/10.3390/rs11030221113Martelli, G. P., Boscia, D., Porcelli, F., & Saponari, M. (2015). The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. European Journal of Plant Pathology, 144(2), 235-243. doi:10.1007/s10658-015-0784-7Olmo, D., Nieto, A., Adrover, F., Urbano, A., Beidas, O., Juan, A., … Landa, B. B. (2017). First Detection of Xylella fastidiosa Infecting Cherry (Prunus avium) and Polygala myrtifolia Plants, in Mallorca Island, Spain. Plant Disease, 101(10), 1820-1820. doi:10.1094/pdis-04-17-0590-pdnSaponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D., & Saldarelli, P. (2019). Xylella fastidiosa in Olive in Apulia: Where We Stand. Phytopathology®, 109(2), 175-186. doi:10.1094/phyto-08-18-0319-fiVergara-Díaz, O., Zaman-Allah, M. A., Masuka, B., Hornero, A., Zarco-Tejada, P., Prasanna, B. M., … Araus, J. L. (2016). A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00666Thenkabail, P. S., & Lyon, J. G. (Eds.). (2016). Hyperspectral Remote Sensing of Vegetation. doi:10.1201/b11222Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231-245. doi:10.1016/j.rse.2013.07.031Gonzalez-Dugo, V., Hernandez, P., Solis, I., & Zarco-Tejada, P. (2015). Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping. Remote Sensing, 7(10), 13586-13605. doi:10.3390/rs71013586Hernández-Clemente, R., Navarro-Cerrillo, R., Ramírez, F., Hornero, A., & Zarco-Tejada, P. (2014). A Novel Methodology to Estimate Single-Tree Biophysical Parameters from 3D Digital Imagery Compared to Aerial Laser Scanner Data. Remote Sensing, 6(11), 11627-11648. doi:10.3390/rs61111627Colaço, A. F., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2018). Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges. Horticulture Research, 5(1). doi:10.1038/s41438-018-0043-0Ma, Q., Su, Y., Luo, L., Li, L., Kelly, M., & Guo, Q. (2018). Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data. Ecological Indicators, 95, 298-310. doi:10.1016/j.ecolind.2018.07.050Ma, Q., Su, Y., & Guo, Q. (2017). Comparison of Canopy Cover Estimations From Airborne LiDAR, Aerial Imagery, and Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9), 4225-4236. doi:10.1109/jstars.2017.2711482Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., … Dandekar, A. M. (2014). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), 1-25. doi:10.1007/s13593-014-0246-1Calderón, R., Navas-Cortés, J., & Zarco-Tejada, P. (2015). Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sensing, 7(5), 5584-5610. doi:10.3390/rs70505584Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., Hernández-Clemente, R., … Navas-Cortes, J. A. (2018). Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4(7), 432-439. doi:10.1038/s41477-018-0189-7Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. (2018). Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sensing, 10(7), 1091. doi:10.3390/rs10071091Vicent, A., & Blasco, J. (2017). When prevention fails. Towards more efficient strategies for plant disease eradication. New Phytologist, 214(3), 905-908. doi:10.1111/nph.14555Wang, X., Singh, D., Marla, S., Morris, G., & Poland, J. (2018). Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods, 14(1). doi:10.1186/s13007-018-0324-5Bourgeon, M. A., Gée, C., Debuisson, S., Villette, S., Jones, G., & Paoli, J. N. (2016). « On-the-go » multispectral imaging system to characterize the development of vineyard foliage with quantitative and qualitative vegetation indices. Precision Agriculture, 18(3), 293-308. doi:10.1007/s11119-016-9489-yUnderwood, J. P., Hung, C., Whelan, B., & Sukkarieh, S. (2016). Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Computers and Electronics in Agriculture, 130, 83-96. doi:10.1016/j.compag.2016.09.014Zampetti, E., Papa, P., Di Flaviano, F., Paciucci, L., Petracchini, F., Pirrone, N., … Macagnano, A. (2017). Remotely Controlled Terrestrial Vehicle Integrated Sensory System for Environmental Monitoring. Sensors, 338-343. doi:10.1007/978-3-319-55077-0_43Hiremath, S. A., van der Heijden, G. W. A. M., van Evert, F. K., Stein, A., & ter Braak, C. J. F. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50. doi:10.1016/j.compag.2013.10.005Pérez-Ruiz, M., Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Peruzzi, A., Vieri, M., … Agüera, J. (2015). Highlights and preliminary results for autonomous crop protection. Computers and Electronics in Agriculture, 110, 150-161. doi:10.1016/j.compag.2014.11.010Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., & Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination. Agricultural and Forest Meteorology, 121(1-2), 37-53. doi:10.1016/j.agrformet.2003.08.001Hosoi, F., & Omasa, K. (2006). Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 3610-3618. doi:10.1109/tgrs.2006.881743Stein, M., Bargoti, S., & Underwood, J. (2016). Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry. Sensors, 16(11), 1915. doi:10.3390/s16111915Saponari, M., Boscia, D., Altamura, G., Loconsole, G., Zicca, S., D’Attoma, G., … Martelli, G. P. (2017). Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Scientific Reports, 7(1). doi:10.1038/s41598-017-17957-

    Computer vision for automatic quality inspection of dried figs (Ficus carica L.) in real-time

    Full text link
    [EN] This work reports the development of automated systems based on computer vision to improve the quality control and sorting of dried figs of Cosenza (protected denomination of origin) focusing on two research issues. The first was based on qualitative discrimination of figs through colour assessment comparing the analysis of colour images obtained using a digital camera with those obtained according to conventional instrumental methods, i.e. colourimetry currently done in laboratories. Data were expressed in terms of CIE XYZ, CIELAB and HunterLab colour spaces, as well as the browning index measurement of each fruit, and then, analysed using PCA and PLS-DA based methods. The results showed that both chroma meter and image analysis allowed a complete distinction between high quality and deteriorated figs, according to colour attributes. The second research issue had the purpose of developing image processing algorithms to achieve real-time sorting of figs using an experimental prototype based on machine vision, simulating an industrial application. An extremely high 99.5% of deteriorated figs were classified correctly as well as 89.0% of light coloured good quality figs A lower percentage was obtained for dark good quality figs but results were acceptable since the most of the confusion was among the two classes of good product. (c) 2015 Elsevier B.V. All rights reserved.This work has been partially funded by INIA through research project RTA2012-00062-C04-01 with the support of European FEDER funds.Benalia, S.; Cubero, S.; Prats-Montalbán, JM.; Bernardi, B.; Zimbalatti, G.; Blasco, J. (2016). Computer vision for automatic quality inspection of dried figs (Ficus carica L.) in real-time. Computers and Electronics in Agriculture. 120:17-25. https://doi.org/10.1016/j.compag.2015.11.002S172512

    Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images

    Full text link
    [EN] In polyethylene terephthalate's (PET)'s recycling processes, separation from polyvinyl chloride (PVC) is of prior relevance due to its toxicity, which degrades the final quality of recycled PET. Moreover, the potential presence of some polymers in mixed plastics (such as PVC in PET) is a key aspect for the use of recycled plastic in products such as medical equipment, toys, or food packaging. Many works have dealt with plastic classification by hyperspectral imaging, although only some of them have been directly focused on PET sorting and very few on its separation from PVC. These works use different classification models and preprocessing techniques and show their performance for the problem at hand. However, still, there is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method, when using NIR hyperspectral images. There is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method when using near-infrared hyperspectral images.Universitat Politecnica de Valencia, Grant/Award Number: UPV-FE-16-B18This research was partially supported by the Universitat Politècnica de València under the project UPV‐FE‐16‐B18.Galdón-Navarro, B.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2018). Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images. Journal of Chemometrics. 32(1):1-14. https://doi.org/10.1002/cem.2980S11432

    VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits

    Full text link
    [EN] In this work an N-way partial least squares regression discriminant analysis (NPLS-DA) methodology is developed to detect symptoms of disease caused by Penicillium digitatum in citrus fruits (green mould) using visible/near infrared (VIS/NIR) hyperspectral images. To build the discriminant model a set of oranges and mandarins was infected by the fungus and another set was infiltrated just with water for control purposes. A double cross-validation strategy is used to validate the discriminant models. Finally, permutation testing is used to select a few bands offering the best correct classification rates in the validation set. The discriminant models developed here can be potentially implemented in a fruit packinghouse to detect infected citrus fruits at their arrival from the field with affordable multispectral (3 5 channels) cameras installed in the packinglines.This research was partially funded by the Spanish Ministry of Science and Innovation through grants DPI2011-28112-C04-02 and DPI2014-55276-C05-1R, and by INIA through grant RTA2012-00062-C04-01. In all cases with the support of European FEDER funds. Authors thank Lluis Palou from the Centro de Tecnologia Postcosecha at the IVIA for the help and supervision in the innoculation process of the fruits.Folch Fortuny, A.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2016). VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems. 156:241-248. https://doi.org/10.1016/j.chemolab.2016.05.005S24124815

    In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties

    Full text link
    [EN] One of the most studied techniques for the non-destructive determination of the internal quality of fruits has been visible and nearinfrared (VIS-NIR) reflectance spectroscopy. This work evaluates a new non-destructive in-line VIS-NIR spectroscopy prototype for in-line identification of five apple varieties, with the advantage that it allows the spectra to be captured with the probe at the same distance from all the fruits regardless of their size. The prototype was tested using varieties with a similar appearance by acquiring the diffuse reflectance spectrum of the fruits travelling on the conveyor belt at a speed of 0.81 m/s which is nearly 1 fruit/s. Principal component analysis (PCA) was used to determine the variables that explain the most variance in the spectra. Seven principal components were then used to perform linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). QDA was found to be the best in-line classification method, achieving 98% and 85% success rates for red and yellow apple varieties, respectively. The results indicated that the in-line application of VIS-NIR spectroscopy that was developed is potentially feasible for the detection of apple varieties with an accuracy that is similar to or better than a laboratory system.This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by INIA and FEDER funds through project RTA2015-00078-00-00. Victoria Cortes Lopez thanks the Spanish Ministry of Education, Culture and Sports for FPU grant (FPU13/04202).Cortes-Lopez, V.; Cubero-García, S.; Blasco Ivars, J.; Aleixos Borrás, MN.; Talens Oliag, P. (2019). In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties. Food and Bioprocess Technology. 12(6):1021-1030. https://doi.org/10.1007/s11947-019-02268-0S10211030126Aleixandre-Tudo, J. L., Nieuwoudt, H., & du Toit, W. (2019). Towards on-line monitoring of phenolic content in red wine grapes: a feasibility study. Food Chemistry, 270, 322–331.Alonso, J., Artigas, J., & Jimenez, C. (2003). Analysis and identification of several apple varieties using ISFETs sensors. Talanta, 59(6), 1245–1252.Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). In: Chemometrics: a practical guide, New York. USA: John Wiley and Sons.Beghi, R., Giovenzana, V., Brancadoro, L., & Guidetti, R. (2017). Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 204, 46–54.Brunt, K., Smits, B., & Holthuis, H. (2010). Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part II. Development and testin of the automated semi-industrial system with in-line NIR for the characterization of potatoes. Potato Research, 53(1), 41–60.Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55(18), 7234–7243.Carr, G. L., Chubar, O., & Dumas, P. (2005). Spectrochemical analysis using infrared multichannel detectors. In R. Bhargava & I. W. Levin (Eds.), 1st ed (pp. 56–84). Oxford: Wiley-Blackwell.Casale, M., Casolino, C., Ferrari, G., & Forina, M. (2008). Near infrared spectroscopy and class modelling techniques for geographical authentication of Ligurian extra virgin olive oil. Journal of Near Infrared Spectroscopy, 16(1), 39–47.Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158.Fernández-Ahumada, E., Garrido-Varo, A., Guerrero-Ginel, A. E., Wubbels, A., van der Sluis, C., & van der Meer, J. M. (2006). Understanding factors affecting near infrared analysis of potato constituents. Journal of Near Infrared Spectroscopy, 14(1), 27–35.He, Y., Li, X., & Shao, Y. (2007). Fast discrimination of apple varieties using Vis/NIR spectroscopy. International Journal of Food Properties, 10(1), 9–18.Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: with applications in R. New York: springer.Jie, D., Xie, L., Rao, X., & Ying, Y. (2014). Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biology and Technology, 90, 1–6.Kader, A. A., Kasmire, R. F., Mitchell, F. G., Reid, M. S., Sommer, N. F., & Thompson, J. F. (1985). Postharvest technology of horticultural crops (Special publication, mum. 3311, p. 192). Davis: Cooperative Extension, University of California.Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88(7), 1115–1127.Lammertyn, J., De Baerdemaeker, J., & Nicolaï, B. (2000). Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biology and Technology, 18(2), 121–132.Liu, F., Jiang, Y., & He, Y. (2009). Variable selection in visible/near infrared spectra for linear and nonlinear calibrations: a case study to determine soluble solids content of beer. Analytica Chimica Acta, 635(1), 45–52.López, A. F. (2003). ‘Manual para la preparación y venta de frutas y hortalizas, del campo al mercado’. PDF File: Boletín de servicios agrícolas de la FAO, 151. http://www.fao.org/tempref/docrep/fao/006/y4893S/y4893S00.pdf . Accessed 20 Aug 2018.Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21.Luo, W., Huan, S., Fu, H., Wen, G., Cheng, H., Zhou, J., Wu, H., Shen, G., & Yu, R. (2011). Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apples. Food Chemistry, 128(2), 555–561.Marrazzo, W. N., Heinemann, P. H., Crassweller, R. E., & LeBlanc, E. (2005). Electronic nose chemical sensor feasibility study for the differentiation of apple cultivars. American Society of Agricultural Engineers, 48(5), 1995–2002.Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75(3), 394–404.Næs, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester: NIR Publications.Rodríguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44(1), 250–258.Ronald, M., & Evans, M. (2016). Classification of selected apple fruit varieties using Naive Bayes. Indian Journal of Computer Science and Engineering, 7(1), 13–19.Sabanci, K., & Ünlersen, M. F. (2016). Different apple varieties classification using kNN and MLP algorithms. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 166–169.Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790.Salguero-Chaparro, L., Baeten, V., Abbas, O., & Peña-Rodríguez, F. (2012). On-line analysis of intact olive fruits by vis-NIR spectroscopy: optimisation of the acquisition parameters. Journal of Food Engineering, 112(3), 152–157.Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1(03), 30–34.Shang, L., Guo, W., & Nelson, S. O. (2015). Apple variety identification based on dielectric spectra and chemometric methods. Food Anal. Methods, 8(4), 1042–1052.Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicumesculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.Shenderey, C., Shmulevich, I., Alchanatis, V., Egozi, H., Hoffman, A., Ostrovsky, V., Lurie, S., Arie, R. B., & Schmilovitch, Z. (2010). NIRS detection of moldy core in apples. Food Bioprocess Technology, 3(1), 79–86.Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98.Song, W., Wang, H., Maguire, P., & Nibouche, O. (2017). Differentiation of organic and non-organic apples using near infrared reflectance apectroscopy – a pattern recognition approach. In Unknown host publication (pp. 1–3). https://doi.org/10.1109/ICSENS.2016.7808530 .Sun, X., Liu, Y., Li, Y., Wu, M., & Zhu, D. (2016). Simultaneous measurements of Brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy. Postharvest Biology and Technology, 116, 80–87.Wojdyło, A., Oszmiański, J., & Laskowski, P. (2008). Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agricultural and Food Chemistry, 56(15), 6520–6530.Wu, X., Wu, B., Sun, J., Li, M., & Du, H. (2016). Discrimination of apples using near infrared spectroscopy and sorting discriminant analysis. International Journal of Food Properties, 19(5), 1016–1028.Wu, X., Wu, B., Sun, J., & Yang, N. (2017). Classification of Apple varieties using near infrared reflectance spectroscopy and fuzzy discriminant C-Means clustering model. Journal of Food Process Engineering, 40, 1–7

    Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality

    Full text link
    [EN] Visible and near-infrared spectroscopy has been widely used as a non-invasive and rapid-assessment technique for the quality control of agricultural products. In this study, 325 samples of nectarines representing two commercial varieties, cv. 'Big Top' and cv. 'Magique', were analysed by visible and near-infrared diffuse reflectance spectroscopy (VIS-NIR). The spectral data were pre-treated and analysed to predict the internal quality of the samples and to discriminate between the two varieties. Good prediction of the internal quality of the samples, using partial least-squares regressions, was observed for both (R (2) (P) of 0.909 and 0.927 and RMSEP of 0.235 and 0.238 for cv. Big Top and Magique, respectively). Discriminant models, using linear discriminant and partial least-squares discriminant analyses, were built to classify the nectarines. Both methods provided good results with rates of 97.44 and 100% of correctly classified samples. The results indicated that visible and near-infrared techniques can be useful and simple methods for quality control and for the correct identification of nectarines in commercial lines as an alternative to the slower and less accurate manual classification.This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by the INIA and FEDER funds through projects RTA2012-00062-C04-01 and 03, and RTA2015-00078-00-00. Victoria Lopez Cortes thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202). The authors are also grateful to Fruits de Ponent (Lerida) for providing the fruit.Cortes-Lopez, V.; Blasco Ivars, J.; Aleixos Borrás, MN.; Cubero García, S.; Talens Oliag, P. (2017). Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality. Food and Bioprocess Technology. 10(10):1755-1766. https://doi.org/10.1007/s11947-017-1943-yS175517661010Bachion de Santana, F., Caixeta Gontijo, L., Mitsutake, H., Júnior Mazivilla, S., Maria de Souza, L., & Borges Neto, W. (2016). Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chemistry, 209, 228–233.Bakeev, K. A. (2010). Process analytical technology. United Kingdom: Wiley.Bonany, J., Buehler, A., Carbó, J., Codarin, S., Donati, F., Echeverria, G., Egger, S., Guerra, W., Hilaire, C., Höller, I., Iglesias, I., Jesionkowska, K., Konopacka, D., Kruczynska, D., Martinelli, A., Pitiot, C., Sansavini, S., Stehr, R., & Schoorl, F. (2013). Consumer eating quality acceptance of new apple varieties in different European countries. Food Quality and Preference, 30, 250–259.Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55, 7234–7243.Carlomagno, G., Capozzo, L., Attolico, G., & Distante, A. (2004). Non-destructive grading of peaches by near-infrared spectrometry. Infrared Physics & Technology, 46, 23–29.Carr, G. L, Chubar, O., Dumas, P. (2005). Multichannel detection with a synchrotron light source: Design and potential. Spectrochemical Analysis Using Multichannel Detectors Analytical Chemistry Series, edited by Bhargava P, Levin I. Chapter 3, (pp. 56–84). Oxford: Wiley-BlackwellCayuela, J. A., & Weiland, C. (2010). Intact orange quality prediction with two portable NIR spectrometers. Postharvest Biology and Technology, 58(2), 113–120.Clareton, M. (2000). Peach and nectarine production in France: trends, consumption and perspectives. Summaries Prunus Breeders Meeting. EMPRABA, Clima Temperado. Pelotas (RS) Brazil, November 29 to December 2000, pp. 83–91Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158.Crisosto, C. H. (2002). How do we increase peach consumption? Proceedings of 5th International Symposium on Peach, ISHS. Acta Horticulturae, 592, 601–605.Crisosto, C., & Crisosto, G. (2005). Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid meeting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biology and Technology, 38, 239–246.Crisosto, C. H., Garner, D., Crisosto, G. M., Wiley, P., & Southwick, S. (1997). Evaluation of the minimum maturity index for new cherry cultivars growing in the San Joaquin Valley. Visalia: California Cherry Growers Association.Crisosto, C. H., Crisosto, G. M., & Ritenour, M. A. (2002). Testing the reliability of skin color as an indicator of quality for early season ‘Brooks’ (Prunus avium L.) cherry. Postharvest Biology and Technology, 24, 147–154.Crisosto, C. H., Crisosto, G. M., & Metheney, P. (2003). Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology, 28, 159–167.Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4, 487–504.Cunha, L. C., Teixeira, G. H. A., Nardini, V., & Walsh, K. (2016). Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy. Postharvest Biology and Technology, 112, 64–74.Della Cara, R. (2005). In calo i consumi e l’export de pesche e nettarine italiane. Rivista di Frutticoltura, 7–8, 19–20.Downey, G. (1997). Authentication of food and food ingredients by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 4, 47–61.Eskin, N.A.M. & Hoehn, E. (2013). Fruits and vegetables. Eskin, N.A.M., Shahidi, F. (Eds.), Biochemistry of foods, 3rd edn. Amsterdam, The Netherlands: Elsevier Inc. pp. 49–126.Faber, N. M. (1999). Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions. Analytical Chemistry, (71), 557–565.Fang, L., Li, H., Liu, Z., & Xian, X. (2013). Online evaluation of yellow peach quality by visible and near-infrared spectroscopy. Advance Journal of Food Science and Technology, 5(5), 606–612.Ferrer, P., Montesinos, J. L., Valero, F., & Solá, C. (2001). Production of native and recombinant lipases by Candida rugosa. Applied Biochemistry and Biotechnology, 95(3), 221–255.Font, D., Tresanchez, M., Pallejà, T., Teixidó, M., Martinez, D., Moreno, J., & Palacín, J. (2014). An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture, 102, 112–119.Fu, X., Yibin, Y., Lu, H., Xu, H., & Yu, H. (2007). FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sensing and Instrumentation for Food Quality and Safety, 1, 29–35.GenCat: Generalitat de Cataluña. 2013.Technical report 1/2011 and Technical Indicator A2. (accessed 13.05.13).Ghiani, A., Negrini, N., Morgutti, S., Baldin, F., Nocito, F. F., Spinardi, A., Mignani, I., Bassi, D., & Cocucci, M. (2011). Melting of ‘Big Top’ nectarine fruit: some physiological, biochemical, and molecular aspects. Journal of the American Society for Horticultural Science, 136, 61–68.Golic, M., & Walsh, K. B. (2006). Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta, 555(2), 286–291.Gorry, P. A. (1990). General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry, 62, 570–573.He, Y., Li, X. L., & Shao, Y. N. (2006). Discrimination of varieties of apple using near infrared spectra based on principal component analysis and artificial neural network model. Spectroscopy and Spectral Analysis, 26, 850–853.Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.Huang, L., Wu, D., Jin, H., Zhang, J., He, Y., & Lou, C. (2011). Internal quality determination of fruit with bumpy surface using visible and near infrared spectroscopy and chemometrics: a case study with mulberry fruit. Biosystems Engineering, 109(4), 377–384.Iglesias, I. (2013). Peach production in Spain: current situation and trends, from production to consumption. Proceedings of the 4th Conference, Innovation in Fruit Growing, 75–96. D. Milatovic (Ed), Serbia (Belgrad)Iglesias, I., & Echeverría, G. (2009). Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Scientia Horticulturae, 120, 41–50.Jaiswal, P., Jha, S. N., & Bharadwaj, R. (2012). Non-destructive prediction of quality of intact banana using spectroscopy. Scientia Horticulturae, 135, 14–22.Kamruzzaman, M., ElMasry, G., Sun, D., & Allen, P. (2012). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovate Food Science and Emerging Technologies, 16, 218–226.Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88, 1115–1127.Lichtenthaler, H.K. & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, pp. F.4.3.1–F.4.3.8. Wiley, New York.Liu, Y., Chen, X., & Ouyang, A. (2008). Nondestructive determination of pear internal quality indices by visible and near infrared spectrometry. LWT - Food Science and Technology, 41, 1720–1725.Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technology, 5, 1121–1142.Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21.Lu, R. (2004). Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology, 31(2), 147–157.Ma, G., Fu, X. P., Zhou, Y., Ying, Y. B., Xu, H. R., Xie, L. J., & Lin, T. (2007). Nondestructive sugar content determination of peaches by using near infrared spectroscopy technique. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 27(5), 907–910.Magwaza, L. S., Opara, L. U., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5, 425–444.Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75, 394–404.Martins, P. A., Cirino de Carvalho, L., Cunha, L. C., Manhas, F., & Teixeira, G. H. (2016). Robust PLS models for soluble solids content and firmness determination in low chilling peach using near infrared spectroscopy (NIR). Postharvest Biology and Technology, 111, 345–351.McGlone, V. A., & Kawano, S. (1998). Firmness, dry-matter and soluble-solids assessment of post-harvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology, 13, 131–141.Merzlyak, M. N., Solo, A. E., & Gitelson, A. A. (2003). Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biology and Technology, 27, 197–211.Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, I. K., & Lammertyn, J. (2007). Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46, 99–118.Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis (2nd ed.pp. 123–132). Burnt Mill, Harlow, Essex, England: Longman Group.Padilla-Zakour, O. I. (2009). Good manufacturing practices. In N. Heredia, I. Wesley, & S. Garcia (Eds.), Microbiologically safe foods (pp. 395–415). New York: John Wiley and Sons Inc..Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1998). Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches. Journal of the American Society for Horticultural Science, 123(5), 898–905.Pérez-Marín, D., Sánchez, M. T., Paz, P., González-Dugo, V., & Soriano, M. A. (2011). Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy. Food Science and Technology, 44, 1405–1414.Ravaglia, G., Sansavini, S., Ventura, M., & Tabanelli, D. (1996). Indici di maturazione e miglioramento cualitativo delle pesche. Revista di Frutticoltura, 3, 61–66.Reita, G., Peano, C., Saranwong, S., & Kawano, S. (2008). An evaluating technique for variety compatibility of fruit applied to a near infrared Brix calibration system: a case study using Brix calibration for nectarines. Journal of Near Infrared Spectroscopy, 16(2), 83–89.Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44, 250–258.Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790.Sánchez, M. T., De la Haba, M. J., Guerrero, J. E., Garrido-Varo, A., & Pérez-Marín, D. (2011). Testing of a local approach for the prediction of quality parameters in intact nectarines using a portable NIRS instrument. Postharvest Biology and Technology, 60(2), 130–135.Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1, 30–34.Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified squares procedures. Analytical Chemistry, 36, 1627–1639.Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicum esculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.Singh, Z., Singh, R. K., Sane, V. A., & Nath, P. (2013). Mango—postharvest biology and biotechnology. Critical Reviews in Plant Sciences, 32(4), 217–236.Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98.Tijskens, L. M. M., Zerbini, P. E., Schouten, R. E., Vanoli, M., Jacob, S., Grassi, M., & Torricelli, A. (2007). Assessing harvest maturity in nectarines. Postharvest Biology and Technology, 45, 204–213.Valero, A., Marín, S., Ramos, A. J., & Sanchis, V. (2007). Effect of preharvest fungicides and interacting fungi on Aspergillus carbonarius growth and ochratoxin A synthesis in dehydrating grapes. Letters in Applied Microbiology, 45, 194–199.Walsh, K. B., Golic, M., & Greensill, C. V. (2004). Sorting of fruit and vegetables using near infrared spectroscopy: application to soluble solids and dry matter content. Journal of Near Infrared Spectroscopy, 12, 141–148.Williams, P. C. & Norris, K. H. (1987). Qualitative applications of near infrared reflectance spectroscopy. P. C. Williams & K. H. Norris (Eds.), Near infrared technology in the agricultural and food industries, pp. 241–246. St. Paul, MN: American Association of Cereal Chemist
    corecore