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Abstract— This paper studies the coupling between the 

capacitor voltage control loops of diode-clamped (or functionally 
equivalent) multilevel multileg (multiphase) dc-ac converters. 
From a complete model of the plant revealing the coupling, a 
simple approach consisting on multiplying the vector of control 
commands by a constant matrix is proposed to decouple the 
control problem and achieve a better controller performance. 
Simulation and experimental results are presented to prove the 
superior performance of the proposed decoupled control. 
 

Index Terms— Active-clamped, capacitor voltage balance, 
diode-clamped, multilevel, pulsewidth modulation, virtual vector. 

I. INTRODUCTION 
ULTILEVEL converters [1] have opened a door for 
advances in the electrical energy conversion technology, 

bringing advantages in terms of converter power rating, 
efficiency, harmonic distortion, and electromagnetic noise. 

This paper focuses on multilevel multileg dc-ac converters 
where a single dc-link is formed by the series connection of 
capacitors. The popular diode-clamped family of multilevel 
converters belongs to this category. Other arrangements of 
semiconductors to build the converter legs are also possible, 
such as in the active-clamped configuration [2]. In all these 
cases, each converter leg can be modelled as a single-pole n-
throw switch, as shown in Fig. 1. Each leg has an associated 
switching-state variable (sac � {1,2,…, n}) storing the dc-link 
node number to which the ac output terminal is connected. 
The operation of such multilevel multileg dc-ac converters is 
challenging due to the well-known and widely reported 
capacitor voltage balancing issue, which is still an active 
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research topic in the most recent literature [3]-[14]. 
Recently, a capacitor voltage balancing control based on a 

suitable modulation strategy (without the need of auxiliary 
hardware) has been proposed in [14], applicable to dc-ac 
converters with any number of levels and legs. The basic 
control structure is reproduced in Fig. 2(a). A set of variables 
capturing the unbalance between the two normalized partial 
dc-link voltages associated to each internal dc-link point y � 
{2,…, n�1}is initially defined as 
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and grouped into vector u = [u2, u3, …, un�1]T. Vector u* is 
generated from the command value of the dc-link capacitor 
voltages. The difference between u* and u defines the error 
vector e. The vector control signal is then computed as k = 
Gc(s)·e, where matrix Gc(s) = diag{Gc(s),…, Gc(s)}. Thus, 
each component of the error vector, ey, is processed by an 
individual compensator with transfer function Gc(s) to produce 
the value of the modulator parameter ky. These n�2 
modulation parameters are grouped into vector k. 

From the value of the modulation index (m), line-cycle 
angle (T), parameters k, and the dc-link capacitor voltages (vC, 
only necessary in cases where unbalanced dc-link capacitor 
voltage operation is desired), the modulation strategy in [14] 
determines each leg switching state, grouped into vector sac. 

 

ac1 

C 

C 

idc(n–1) 

idc3 

iac1 

+ 

Vdc 

dc1 
C 

�

idc2 

…
 

+ 

� 
vCn–1 

+ 

� 
vC2 

+ 

� 
vC1 

dc2 

dc3 

dcn�1

dcn 

…
 

ac2 

iac2 

…
 

acp

iacp 

…
 

…

…

…

…

…

sac1 sac2 sacp

 
Fig. 1.  Functional schematic of a n-level p-leg converter. 
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Fig. 2.  Capacitor voltage control structure. (a) Without decoupling. (b) With 
decoupling (the dashed box contains the new proposed controller). 

The value of parameter ky represents the control action 
applied to mitigate the error ey through the injection of a 
switching-cycle-average current at node dcy equal to 
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where P is the switching-cycle-average power being 
transferred from the converter dc side to the ac side. This 
paper analyzes the coupling between the n�2 control loops 
(for n � 4) and proposes a simple method to decouple the 
control loop. 

The paper is organized as follows. Section II presents the 
relevant plant model revealing the coupling and proposes a 
simple decoupling approach. Section III presents simulation 
and experimental results proving the superior performance of 
the decoupled control, and Section IV outlines the 
conclusions. 

II. DECOUPLED CAPACITOR VOLTAGE BALANCING CONTROL 
In order to illustrate the coupling between control loops, let 

us first consider the simplest case of a four-level converter. It 
is assumed that the total dc-link voltage Vdc is kept constant 
through the regulation performed by other systems connected 
to the dc-link or through other converter control loops. It is 
also assumed that all capacitors present the same capacitance. 

From Fig. 2(a), control action k2 forces an injection of 
current idc2 in response to the need to regulate u2. As shown in 
Fig. 3, with the above assumptions, two thirds of idc2 flow 
through the bottom capacitor and one third through the upper 
two capacitors, leading to a 'v increase of the bottom 
capacitor voltage and a 'v/2 decrease of the upper two 
capacitor voltages. The resulting variation of variables u2 and 
u3 are 
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It can be therefore seen that control variable k2 not only 
affects u2, but also affects u3, although in a smaller proportion. 
Due to the system symmetry, control variable k3 also affects 
both u3 and u2 in an analogous manner. This coupling may 
lead to an inefficient chain of consecutive corrections from all 
control loops; i.e., conflicting control signals could occur, 
because the controller is decoupled and the plant is coupled. 

The plant transfer function matrix, with control input k and 
output u, can be expressed as 
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Fig. 3.  Effect of current idc2 on the dc-link capacitor voltages of a four-level 
converter. 
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In the general n-level case, 
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where Cn is the matrix of coupling coefficients, whose general 
expression is presented in the Appendix. 

In order to decouple the plant [15], the vector of control 
variables fed by the compensators can be multiplied by the 
inverse of Cn, as shown in Fig. 2(b). Then, the new controller-
to-output plant transfer function becomes fully decoupled 
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where In�2 is the (n�2)-order identity matrix. In the case of a 
four-level converter, 
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The Appendix also presents the expression of the inverse of 
the coupling matrix for the general n-level case. 

According to (6), a system with the control structure of Fig. 
2(b) can be modeled with a set of n�2 single-input single-
output decoupled loop gains 

� � ,e)(2 ·
c

dc

d sT

y

y
y sG

sVC
P

e
u

sT ���
��

   (8)

where y�{2,3,.., n�1} and Td is the delay introduced by a 
digital implementation of the controller. These loops are all 
independent from each other. With the control structure of Fig. 
2(a), the loop gain of each channel is also as in (8), but each 
loop receives as perturbations the control action from other 
loops, according to the coupling coefficients of Cn. 

The introduction of the decoupling block in the control does 
not imply any change in the design of the compensator and 
modulator blocks. The modulator can be the same as in [14] 
and the compensator can be designed as explained in section 
III.C of [14]. Assuming Td | Ts (switching period), the 
compensator can be designed as [14] 
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where Zs = 2S·fs = 2S/Ts. If Td is higher than Ts, the maximum 
value of Gc0 to guarantee a minimum phase margin will 
decrease. In applications with a significant unbalanced dc 
loading/sourcing of the dc-link capacitors, the use of a 
proportional-integral compensator would be more advisable. 

III. SIMULATION AND EXPERIMENTAL RESULTS 
Simulations and experiments have been carried out to study 

the performance of the proposed decoupled dc-link capacitor 
voltage control. 

Simulations have been performed in Matlab-Simulink. The 
dc-link is fed by a constant voltage source and a wye-
connected multiphase series resistive-inductive load is 
assumed at the converter ac side with per-phase characteristic 
parameters R and L. Fig. 4 depicts the performance under 
ramp variations of v*

C2 and v*
C3 commands in a four-level 

three-phase system. At t = 20 ms, the first ramp begins with 
v*

C2 = v*
C3 = 50 V. At t = 25 ms, the first ramp ends with v*

C2 = 
60 V and v*

C3 = 40 V. At t = 50 ms, the second ramp begins 
with v*

C2 = 60 V and v*
C3 = 40 V. At t = 55 ms, the second 

ramp ends with v*
C2 = v*

C3 = 50 V. This translates into a ramp 
variation of u*

3 from 0 V to 15 V and then back to 0 V, while 
u*

2 remains fixed at 0 V. The compensator gain has been set to 
a moderate value in order to highlight the difference in 
behavior with and without the decoupling matrix in the control 
loop (Gc0 = 0.02, while the maximum value is Gc0 = 0.14 for 
Td = Ts, calculated from (9), and the maximum value is Gc0 = 
0.08 for Td = 2Ts). As it can be observed, under a control 
without decoupling, undesired variations of u2 and vC1 occur, 

while these variations are fully suppressed with a decoupled 
control. 

Fig. 5 shows the performance under a five-level five-phase 
system to prove the applicability of the proposed decoupled 
control to systems with a higher number of levels and legs. 
Similar to Fig. 4, two ramps are generated in v*

C1 and v*
C4 

commands, from v*
C1 = v*

C4 = 50 V to v*
C1 = 60 V and v*

C4 = 
40 V and then back to v*

C1 = v*
C4 = 50 V. With the use of the 

decoupled control, vC2 and vC3 remain constant over the 
transients, as desired. 

As an additional note, it can be observed that the multiphase 
currents of Figs. 4 and 5 do not present any low-frequency 
distortion despite the operation under different capacitor 
voltages. This is an interesting property of the applied 
modulation strategy [14]. 

Experiments have also been carried out with a four-level 
three-phase active-clamped dc-ac converter prototype [2] built 
upon 100 V metal-oxide semiconductor field-effect transistors, 
and controlled with a dSPACE control platform. Experiments 
have been performed in the same conditions as in Fig. 4. The 
experimental results depicted in Fig. 6 corroborate the 
corresponding simulation results from Fig. 4, thus validating 
the superiority of the decoupled control loop. Fig. 7 presents 
additional experimental results of a start-up transient under an 
unbalanced loading of the dc-link capacitors through different 
resistors connected across the capacitors. With the decoupled 
control, the capacitor voltage trajectories to reach the 
commanded value (50 V) are the most effective, significantly 
reducing the transient time. 
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Fig. 4.  Simulation results under ramp variations of the v*
C2 and v*

C3 commands of a four-level three-phase system. Conditions: Vdc= 150 V, m = 0.5, C = 155 PF, 
R = 10 :, L = 10 mH, switching frequency fs = 5 kHz, and Gc(s) = 0.02/[1+s/(1000S)]. (a) Control without decoupling. (b) Control with decoupling. 



0278-0046 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2015.2495295, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 
 

4

0 20 40 60 80

40

50

60

0 20 40 60 80
-5

0

5

v C
1, 

v C
2, 

v C
3,
 v

C
4 (

V

vC1 
vC2 

vC4 
i ac

1,…
, i

ac
5 (

A
) 

vC3 

t (ms) 

0 20 40 60 80

40

50

60

0 20 40 60 80
-5

0

5

v C
1, 

v C
2, 

v C
3,
 v

C
4 (

V

vC1

vC2

vC4

i ac
1,…

, i
ac

5 (
A

) 

vC3 

t (ms) 
(a) (b) 

Fig. 5.  Simulation results under ramp variations of the v*
C1 and v*

C4 commands of a five-level five-phase system. Conditions: Vdc= 200 V, m = 0.5, C = 200 PF,  
R = 10 :, L = 10 mH, fs = 5 kHz, Gc(s) = 0.02/[1+s/(1000S)]. (a) Control without decoupling. (b) Control with decoupling. 
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Fig. 6.  Experimental results under a ramp variation of the v*
C2 and v*

C3 commands of a four-level three-phase system. Conditions: the same as in Fig. 4. 
(a) Control without decoupling. (b) Control with decoupling. 
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Fig. 7.  Experimental results of a converter start-up transient under an unbalance loading of the dc-link capacitors through three resistors (R1, R2, R3), each 
connected in parallel with one of the dc-link capacitors (C1, C2, C3, respectively) in a four-level three-phase system. Conditions: the same as in Fig. 4 with v*

C1 = 
v*

C2 = v*
C3 = 50 V, R1 | 300 :, R2 | 360 :, R3 | 240 :. (a) Control without decoupling. (b) Control with decoupling. 

IV. CONCLUSION 
A dc-link model of multilevel multileg diode-clamped-type 

dc-ac converters has been presented, revealing the coupling 
among the different capacitor voltage control loops. From this 
model, a simple approach involving the product by the inverse 
matrix of coupling coefficients has been proposed to decouple 
the control problem and improve the controller performance. 
Although the decoupling is not strictly necessary, it improves 
the control performance at a low computational cost.  

The presented decoupling approach can be easily applied to 
any multilevel dc-dc and dc-ac conversion system involving a 
dc-link formed by a series connection of capacitors. 

APPENDIX 
The general coupling matrix for an n-level converter is 
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which is a full-rank (n�2)u(n�2) matrix. The element from 
row x and column y is defined as 
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From the value of the coupling coefficients, it can be seen 
that the coupling decreases as the distance between the dc-link 
points increases. 

The inverse of the general coupling matrix is 
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where only three diagonals contain non-zero elements. 
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