5 research outputs found

    Nano-assembled open quantum dot nanotube devices

    Get PDF
    A pristine suspended carbon nanotube is a near ideal environment to host long-lived quantum states. For this reason, they have been used as the core element of qubits and to explore numerous condensed matter physics phenomena. One of the most advanced technique to realize complex carbon nanotube based quantum circuits relies on a mechanical integration of the nanotube into the circuit. Despite the high-quality and complexity of the fabricated circuits, the range of possible experiments was limited to the closed quantum dot regime. Here, by engineering a transparent metal-nanotube interface, we developed a technique that overcomes this limitation. We reliably reach the open quantum dot regime as demonstrated by measurements of Fabry-Perot interferences and Kondo physics in multiple devices. A circuit-nanotube alignment precision of ± 200 nm is demonstrated. Our technique allows to envision experiments requiring the combination of complex circuits and strongly coupled carbon nanotubes such as the realization of carbon nanotube superconducting qubits or flux-mediated optomechanics experiments

    Façonnage du spectre de boßtes quantiques à base de nanotubes de carbones avec la supraconductivité et le ferromagnétisme pour l'électrodynamique quantique mésoscopique

    No full text
    In this thesis, we study carbon nanotubes based quantum dot circuits embedded in a microwave cavity. This general architecture allows one to simultaneously probe the circuit via quantum transport measurements and using circuit quantum electrodynamics techniques. The two experiments realized in this thesis use metallic contacts of the circuit as a resource to engineer a spin sensitive spectrum in the quantum dots. The ïŹrst one is a Cooper pair splitter which was originally proposed as a source of non local entangled electrons. By using cavity photons as a probe of the circuit internal dynamics, we observed a charge transition dressed by coherent Cooper pair splitting. Strong charge-photon coupling in a quantum dot circuit was demonstrated for the ïŹrst time in such a circuit. A new fabrication technique has also been developed to integrate pristine carbon nanotubes inside quantum dot circuits. The purity and tunability of this new generation of devices has made possible the realization of the second experiment. In the latter, we uses two non-collinear spin-valves to create a coherent interface between an electronic spin in a double quantum dot and a photon in a cavity. Highly coherent spin transitions have been observed. We provide a model for the decoherence based on charge noise and nuclear spin ïŹ‚uctuations.Dans cette thĂšse, nous Ă©tudions des circuits de boĂźtes quantiques Ă  base de nanotubes de carbone intĂ©grĂ©s dans une cavitĂ© micro-onde. Cette architecture gĂ©nĂ©rale permet de sonder le circuit en utilisant simultanĂ©ment des mesures de transport et des techniques propre au domaine de l’Electrodynamique quantique sur circuit. Les deux expĂ©riences rĂ©alisĂ©es durant cette thĂšse exploitent la capacitĂ© des mĂ©taux de contact Ă  induire des corrĂ©lations de spins dans les boites quantiques. La premiĂšre expĂ©rience est l’étude d’une lame sÂŽsĂ©paratrice Ă  paires de Cooper, initialement imaginĂ©e comme une source d’électrons intriquĂ©s. Le couplage du circuit aux photons dans la cavitĂ© permet de sonder la dynamique interne du circuit, et a permis d’observer des transitions de charge habillĂ©es par le processus de sĂ©paration des paires de Cooper. Le couplage fort entre une transition de charge dans un circuit de boĂźtes quantiques et des photons en cavitĂ©, a Ă©tĂ© observĂ©e pour la premiĂšre fois dans ce circuit. Une nouvelle technique de fabrication a aussi Ă©tĂ© dĂ©veloppĂ© pour intĂ©grer un nanotube de carbone cristallin au sein du circuit de boĂźtes quantiques. La puretĂ© et l’accordabilitĂ© de cette nouvelle gĂ©nĂ©ration de circuit a rendu possible la seconde expĂ©rience. Cette derniĂšre utilise deux vannes de spins non colinĂ©aire aïŹn de produire une interface cohĂ©rente entre le spin d’un Ă©lectron dans une double boite quantique, et un photon dans une cavitĂ©. Des transitions de spins trĂšs cohĂ©rentes ont Ă©tĂ© observĂ©e, et nous donnons un modĂšle sur l’origine de la dĂ©cohĂ©rence du spin comprenant le bruit en charge et les ïŹ‚uctuations des spins nuclĂ©aires
    corecore