11 research outputs found

    Improving the representation of sugarcane crop in the JULES model for climate impact assessment

    Get PDF
    Bioenergy from sugarcane production is considered a key mitigation strategy for global warming. Improving its representation in land surface models is important to further understand the interactions between climate and bioenergy production, supporting accurate climate projections and decision-making. This study aimed to calibrate and evaluate the Joint UK Land Environment Simulator (JULES) for climate impact assessments in sugarcane. A dataset composed of soil moisture, water and carbon fluxes and biomass measurements from field experiments across Brazil was used to calibrate and evaluate JULES-crop and JULES-BE parametrisations. The ability to predict the spatiotemporal variability of sugarcane yields and the impact of climate change was also tested at five Brazilian microregions. Parameters related to sugarcane allometry, crop growth and development were derived and tested for JULES-crop and JULES-BE, together with the response to atmospheric carbon dioxide, temperature and drought (CTW-response). Both parametrisations showed comparable performance to other sugarcane dynamic models, with an RMSE of 6.75 and 6.05 t ha-1 for stalk dry matter for JULES-crop and JULES-BE, respectively. The parametrisations were also able to replicate the average yield patterns observed in the five microregions over 30 years when the yield gap factors were taken into account, with the correlation (r) between simulated and observed interannual variability of yields ranging from 0.33 to 0.56. An overall small positive trend was found in future yield projections of sugarcane using the new calibrations, with exception of the Jataí mesoregion which showed a clear negative trend for the SSP5 scenario from the year 2070 to 2100. Our simulations showed that an abrupt negative impact on sugarcane yields is expected if daytime temperatures above 35 oC become more frequent. The newly calibrated version of JULES can be applied regionally and globally to help understand the interactions between climate and bioenergy production

    The renin-angiotensin system: a possible new target for depression

    Get PDF
    Depression remains a debilitating condition with an uncertain aetiology. Recently, attention has been given to the renin-angiotensin system. In the central nervous system, angiotensin II may be important in multiple pathways related to neurodevelopment and regulation of the stress response. Studies of drugs targeting the renin-angiotensin system have yielded promising results. Here, we review the potential beneficial effects of angiotensin blockers in depression and their mechanisms of action. Drugs blocking the angiotensin system have efficacy in several animal models of depression. While no randomised clinical trials were found, case reports and observational studies showed that angiotensin-converting enzyme inhibitors or angiotensin receptor blockers had positive effects on depression, whereas other antihypertensive agents did not. Drugs targeting the renin-angiotensin system act on inflammatory pathways implicated in depression. Both preclinical and clinical data suggest that these drugs possess antidepressant properties. In light of these results, angiotensin system-blocking agents offer new horizons in mood disorder treatment

    Erythrocytenmorphologische Untersuchungsmethoden

    No full text
    corecore