133 research outputs found

    Finite temperature hydrodynamic modes of trapped quantum gases

    Full text link
    The hydrodynamic equations of an ideal fluid formed by a dilute quantum gas in a parabolic trapping potential are studied analytically and numerically. Due to the appearance of internal modes in the fluid stratified by the trapping potential, the spectrum of low-lying modes is found to be dense in the high-temperature limit, with an infinitely degenerate set of zero-frequency modes. The spectrum for Bose-fluids and Fermi-fluids is obtained and discussed.Comment: 26 pages, Late

    Collective excitations of degenerate Fermi gases in anisotropic parabolic traps

    Full text link
    The hydrodynamic low-frequency oscillations of highly degenerate Fermi gases trapped in anisotropic harmonic potentials are investigated. Despite the lack of an obvious spatial symmetry the wave-equation turns out to be separable in elliptical coordinates, similar to a corresponding result established earlier for Bose-condensates. This result is used to give the analytical solution of the anisotropic wave equation for the hydrodynamic modes.Comment: 11 pages, Revte

    Quantum states on supersymmetric minisuperspace with a cosmological constant

    Get PDF
    Spatially homogeneous models in quantum supergravity with a nonvanishing cosmological constant are studied. A class of exact nontrivial solutions of the supersymmetry and Lorentz constraints is obtained in terms of the Chern-Simons action on the spatially homogeneous 3-manifold, both in Ashketar variables where the solution is explicit up to reality conditions, and, more concretely, in the tetrad-representation, where the solutions are given as integral representations differing only by the contours of integration. In the limit of a vanishing cosmological constant earlier exact solutions for Bianchi type IX models in the tetrad-representation are recovered and additional asymmetric solutions are found.Comment: 14 pages, late

    Diffusion in normal and critical transient chaos

    Full text link
    In this paper we investigate deterministic diffusion in systems which are spatially extended in certain directions but are restricted in size and open in other directions, consequently particles can escape. We introduce besides the diffusion coefficient D on the chaotic repeller a coefficient D^{\hat D} which measures the broadening of the distribution of trajectories during the transient chaotic motion. Both coefficients are explicitly computed for one-dimensional models, and they are found to be different in most cases. We show furthermore that a jump develops in both of the coefficients for most of the initial distributions when we approach the critical borderline where the escape rate equals the Liapunov exponent of a periodic orbit.Comment: 4 pages Revtex file in twocolumn format with 2 included postscript figure

    Bose-Einstein condensation in shallow traps

    Full text link
    In this paper we study the properties of Bose-Einstein condensates in shallow traps. We discuss the case of a Gaussian potential, but many of our results apply also to the traps having a small quadratic anharmonicity. We show the errors introduced when a Gaussian potential is approximated with a parabolic potential, these errors can be quite large for realistic optical trap parameter values. We study the behavior of the condensate fraction as a function of trap depth and temperature and calculate the chemical potential of the condensate in a Gaussian trap. Finally we calculate the frequencies of the collective excitations in shallow spherically symmetric and 1D traps.Comment: 6 pages, 4 figure

    A New Method for Computing Topological Pressure

    Get PDF
    The topological pressure introduced by Ruelle and similar quantities describe dynamical multifractal properties of dynamical systems. These are important characteristics of mesoscopic systems in the classical regime. Original definition of these quantities are based on the symbolic description of the dynamics. It is hard or impossible to find symbolic description and generating partition to a general dynamical system, therefore these quantities are often not accessible for further studies. Here we present a new method by which the symbolic description can be omitted. We apply the method for a mixing and an intermittent system.Comment: 8 pages LaTeX with revtex.sty, the 4 postscript figures are included using psfig.tex to appear in PR

    Nonconcave entropies in multifractals and the thermodynamic formalism

    Full text link
    We discuss a subtlety involved in the calculation of multifractal spectra when these are expressed as Legendre-Fenchel transforms of functions analogous to free energy functions. We show that the Legendre-Fenchel transform of a free energy function yields the correct multifractal spectrum only when the latter is wholly concave. If the spectrum has no definite concavity, then the transform yields the concave envelope of the spectrum rather than the spectrum itself. Some mathematical and physical examples are given to illustrate this result, which lies at the root of the nonequivalence of the microcanonical and canonical ensembles. On a more positive note, we also show that the impossibility of expressing nonconcave multifractal spectra through Legendre-Fenchel transforms of free energies can be circumvented with the help of a generalized free energy function, which relates to a recently introduced generalized canonical ensemble. Analogies with the calculation of rate functions in large deviation theory are finally discussed.Comment: 9 pages, revtex4, 3 figures. Changes in v2: sections added on applications plus many new references; contains an addendum not contained in published versio

    Bogoliubov theory of the Hawking effect in Bose-Einstein condensates

    Get PDF
    Artificial black holes may demonstrate some of the elusive quantum properties of the event horizon, in particular Hawking radiation. One promising candidate is a sonic hole in a Bose-Einstein condensate. We clarify why Hawking radiation emerges from the condensate and how this condensed-matter analog reflects some of the intriguing aspects of quantum black holes

    Laser probing of Cooper-paired trapped atoms

    Full text link
    We consider a gas of trapped Cooper-paired fermionic atoms which are manipulated by laser light. The laser induces a transition from an internal state with large negative scattering length (superfluid) to one with weaker interactions (normal gas). We show that the process can be used to detect the presence of the superconducting order parameter. Also, we propose a direct way of measuring the size of the gap in the trap. The efficiency and feasibility of this probing method is investigated in detail in different physical situations.Comment: 9 pages, 8 figure
    corecore