
Strathprints Institutional Repository

Leonhardt, U. and Kiss, T. and Ohberg, P. (2003) Bogoliubov theory of the Hawking effect in Bose-
Einstein condensates. Journal of Optics B: Quantum and Semiclassical Optics, 5. pp. 42-49. ISSN
1464-4266

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9017756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
 
 Leonhardt, U. and Kiss, T. and Ohberg, P.* (2003) Bogoliubov theory of the Hawking effect 
in Bose-Einstein condensates. Journal of Optics B: Quantum and Semiclassical Optics, 5. 
pp. 42-49. ISSN 1464-4266 
 
 
 
http://eprints.cdlr.strath.ac.uk/4982/
 
 
 
This is an author-produced version of a paper published in Journal of Optics B: Quantum 
and Semiclassical Optics, 5. pp. 42-49. ISSN 1464-4266 . This version has been peer-reviewed, 
but does not include the final publisher proof corrections, published layout, or pagination. 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/4982/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


ar
X

iv
:c

on
d-

m
at

/0
21

14
64

 v
1 

  2
1 

N
ov

 2
00

2

Bogoliubov theory of the Hawking effect in

Bose-Einstein condensates

U. Leonhardt1, T. Kiss1,2,3, and P. Öhberg1,4
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Abstract

Artificial black holes may demonstrate some of the elusive quantum prop-

erties of the event horizon, in particular Hawking radiation. One promising

candidate is a sonic hole in a Bose-Einstein condensate. We clarify why Hawk-

ing radiation emerges from the condensate and how this condensed-matter

analog reflects some of the intriguing aspects of quantum black holes.
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1 Introduction

Picture a Bose-Einstein condensate flowing through a nozzle where the condensate
exceeds the speed of sound. Suppose that the nozzle is designed such that the
transsonic flow does not become turbulent. One could build such a nozzle, the
equivalent of the Laval nozzle [1], out of light, using the dipole force between light
and atoms to confine the condensate in an appropriate potential. Consider the
fate of sound waves propagating against the current of the transsonic condensate.
In the subsonic region sound waves may advance against the flow, whereas in the
supersonic zone they are simply swept away. No sound can escape the point where
the flow turns supersonic – the sonic horizon. The transsonic fluid acts as the
acoustic equivalent of the black hole [2, 3].

An artificial black hole [4] of this kind could be employed to demonstrate some
elusive quantum properties of the event horizon in the laboratory, in particular
Hawking radiation [5, 6]. Hawking [7] predicted that the event horizon emits quanta
as if the horizon had a temperature given by the gradient of the gravitational po-
tential. To be more precise, the horizon should spontaneously emit quantum pairs
where one particle of each pair falls into the hole and the other escapes into space,
constituting the radiation of the horizon. Both the spectral distribution and the
quantum state of the emerging radiation are thermal. For solar-mass or larger black
holes the Hawking temperature is in the order of 10−7 K or below, which makes
the effect next to impossible to observe in astronomy. In the case of sonic holes the
Hawking temperature is given by the velocity gradient α at the sonic horizon [2, 3],

k
B
T =

~α

2π
, (1)

and the emitted quanta are phonons. A velocity gradient of 103 Hz would corre-
spond to about 1.2 nK temperature. In order to observe such subtle quantum effects
one should employ the best and coldest superfluids available — Bose-Einstein con-
densates of dilute gases [8].

Some detailed schemes for sonic black holes in Bose-Einstein condensates have
been investigated theoretically [9, 10, 11, 12, 13]. The ultimate design depends on
experimental details and on the state of the art in manipulating condensates, a
rapidly evolving field. In this paper we analyze the general aspects of the Hawking
effect in Bose-Einstein condensates. In the first part of the paper we collect and
combine the ingredients of the effect, results that are scattered in the literature.
In the second part we show how the Hawking effect arises naturally within the
Bogoliubov theory of the elementary excitations in Bose-Einstein condensates [14,
15]. For the first time, to our knowledge, we connect the quantum physics of the
event horizon to the behavior of a realistic quantum fluid.
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2 Sound in fluids

Consider the propagation of sound in fluids moving with flow speed u. Suppose that
the flow varies little over the scale of an acoustic wavelength. In this regime we can
describe sound propagation in geometrical acoustics (the equivalent of geometrical
optics [16] or of the semiclassical approximation in quantum mechanics [17]). Sound
rays follow Hamilton’s equations,

dr

dt
=
∂ω

∂k
,

dk

dt
= −∂ω

∂r
, (2)

where the dispersion relation between the frequency ω and the wave vector k defines
the effective Hamiltonian ω(r,k). Assume that in each fluid cell

ω′2 = c2k2 , (3)

where c denotes the speed of sound and ω′ refers to the frequency in locally comoving
frames. In the laboratory frame, ω′ is Doppler-shifted,

ω′ = ω − u · k . (4)

In order to see why waves in fluids are related to waves in general relativity, we write
the dispersion relation (3) in a relativistic form. We introduce the space-time wave
vector

kν = (−ω,k) (5)

and the matrix

gµν = Ω−2

(

1 u

u −c21+ u⊗ u

)

. (6)

The prefactor Ω is an arbitrary non-negative function of the coordinates called the
conformal factor. In this notation the dispersion relation appears in the relativistic
form

gµνkµkν = 0 , (7)

adopting Einstein’s summation convention. Therefore, sound waves experience the
moving fluid as an effective space-time geometry with the metric gµν , the inverse
matrix of gµν , given by

gµν = Ω2

(

c2 − u2 u

u −1 )

. (8)

The analogy between sound waves in fluids and waves in general relativity turns
out to be exact for an irrotational fluid [18] with arbitrary density profile ρ0, flow u

and speed of sound c, where ρ0, u and c may vary in space and time. The velocity
potential ϕ and the density perturbations ρs of sound obey the linearized equation
of continuity and the linearized Bernoulli equation [19]

∂tρs + ∇ · (uρs + ρ0∇ϕ) = 0 , (9)

(∂t + u · ∇)ϕ+ c2
ρs

ρ0
= 0 . (10)
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As a consequence, the velocity potential ϕ of sound obeys the equation [3]

∂t
ρ0

c2
(∂t + u · ∇)ϕ+ ∇ · ρ0

c2
[

u ∂t − (c2 − u2)
]

ϕ = 0 , (11)

which can be written as the relativistic wave equation [2, 3]

DνD
νϕ =

1√−g∂µ

√−ggµν∂νϕ = 0 (12)

with the conformal factor Ω, in d spatial dimensions, chosen as [3]

Ω =
(ρ0

c3

)1−d

. (13)

The assumptions made in order to derive the wave equation (11) are: The fluid [19]
is irrotational (1) and isentropic (2). Bose-Einstein condensates naturally satisfy
condition (1). Condition (2) characterizes the hydrodynamic regime of condensates
[8]. Here the local pressure depends only on the density and on the temperature of
the fluid and the quantum pressure is negligible [8]. Condition (2) turns out to be
violated close to the sonic horizon.

3 Sonic horizon

Consider the propagation of sound waves in the vicinity of the sonic horizon. Focus
on the physics in the direction z of the flow at the horizon in a quasi-onedimensional
model. Assume that the speed of sound in the fluid is constant. The wave equation
(11) reads explicitly

∂t(∂t + u∂z)ϕ+ ∂z

[

u∂t − (c2 − u2)∂z

]

ϕ = 0 . (14)

We obtain the general solution

ϕ = ϕ0(τ± − t) , τ± =

∫

dz

c± u
. (15)

The τ± − t refer to null coordinates in the frame comoving with the fluid [20]. In
these coordinates sound waves propagate exactly like in homogenous space. In the
laboratory frame sound waves are accelerated or slowed down by their carrier, the
moving fluid. An interesting behavior occurs near the horizon, say at z = 0, where

u = −c + αz . (16)

The constant α describes the velocity gradient of the condensate at the sonic horizon.
We see that

τ+ =
ln(z/z∞)

α
. (17)

Wave packets localized just before the horizon at z & 0 take an exponentially large
time to advance against the current. On the other side of the horizon, z . 0, such
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waves drift equally slowly in the direction of the flow. The horizon at z = 0 marks
a clear watershed, cutting space into two disconnected regions. In terms of the
coordinate (17) these regions are characterized by the sign of z∞. For stationary
sound waves with frequency ω we get from the general solution (15)

ϕ = Re
{

ϕ
A
ziω/αe−iωt

}

. (18)

The phase of the wave, (ω/α) ln(z/z∞), diverges logarithmically at the horizon
where, in turn, the wavenumber k develops a pole,

k =
∂

∂z

(

ω

α
ln

z

z∞

)

=
ω

αz
, (19)

and the wavelength of sound shrinks beyond all scales,

λ =
2π

k
= λ0αz . (20)

However, when λ reaches the scale of the healing length ξ of the condensate [8]
(also called the correlation length) the hydrodynamic description of sound in Bose-
Einstein condensates is no longer valid [8]. The acoustic theory at the horizon
predicts its own demise. Similarly, waves near the event horizon of a gravitational
black hole are compressed beyond all scales. New physics beyond the Planck scale
may affect the event horizon [21, 22, 23, 24].

4 Bogoliubov dispersion

For Bose-Einstein condensates the equivalent of trans-Planckian physics is well-
known — Bogoliubov’s theory of elementary excitations. In the dispersion relation
(3) we replace the right-hand side by Bogoliubov’s famous result [8, 25, 26, 27]

ω′2 = c2k2

(

1 +
k2

k2
c

)

. (21)

The parameter kc is the acoustic Compton wave number

kc =
mc

~
=

1

ξ
√

2
, (22)

with m being the atomic mass, expressed also in terms of the healing length ξ [8]
(the correlation length). Typically, ξ is in the order of 10−6 m and c reaches a few
10−3 m/s in Bose-Einstein condensates (without exploiting Feshbach resonances).
We calculate the group velocity

v =
∂ω

∂k
= u+ v′ , (23)

v′ =
∂ω′

∂k
= c2

k

ω′

(

1 +
2k2

k2
c

)

. (24)
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Equation (23) shows that the group velocity obeys the Galilean addition theorem of
velocities. Equation (24) expresses the group velocity in the fluid frame, v′, in terms
of the frequency and the wavenumber. The acoustic Compton wavenumber, kc, sets
the scale beyond which v′ deviates significantly from c. For large wavelengths, sound
is communicated by atomic collision, and the product of the condensate’s density
and the atomic collision strength gives mc2 [8]. For wavelengths comparable with
or shorter than the healing length, the interaction-free Schrödinger dynamics of the
atoms dominates the transport of excitations. Perturbations of the free wavefunction
travel with infinite velocity. So the acoustic Compton wavenumber, kc, characterizes
the crossover between the speed of sound and the infinite speed of perturbations of
free matter waves.

Close to the sonic horizon, the wavenumber (19) increases dramatically, and,
in turn, the effective speed of sound v′ grows. The horizon, defined as the place
where the fluid exceeds the speed of sound, seems to dissolve like a mirage. Nature
appears to prevent the existence of an event horizon. However, we show in Sec. 6
that the horizon still exists, but at a less well-defined location and for a particular
class of elementary excitations only. As long as k2 is much smaller than k2

c we get
the acoustic relation

k ∼ ω

u± c
. (25)

For the other extreme, where k2 is much larger than k2
c , one finds [28, 29]

k ∼ ±2kc

√

u2/c2 − 1 +
ωu

c2 − u2
. (26)

Consider the turning points z0, the points where the group velocity of sound (23)
vanishes. If the acoustic dispersion relation (3) were universally valid the horizon
would be the turning point. Therefore |z| . |z0| does indicate the spatial scale of the
trans-acoustical range around the horizon, which defines the spatial delocalization
of the horizon. To proceed we recall that elementary excitations are small pertur-
bations of the condensate. Their energies ~ω ought to be much smaller than the
mean-field energy of the condensate, which is in the order of mc2 (with c being the
speed of sound). Therefore,

ε =
~ω

mc2
, |ε| ≪ 1 . (27)

We expand the solution z0 of v = 0 as a power series in ε1/3 and find, to leading
order, three turning points in the complex plane given by [30]

z0 =
c

α

3

2
3
√
−1

(ε

2

)2/3

. (28)

Far away from the horizon we may characterize the four fundamental solutions of the
dispersion relation (21) combined with the Doppler shift (4) by their asymptotics
(25) or (26). However, close to a turning point geometrical acoustics alone does
not provide a good description of wave propagation anymore. The turning points
may cause scattering. The connections between elementary excitations across the
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horizon must be examined with care. Extending z to the complex plane represents
an elegant way of analyzing this connection. We find in the Appendix that the
acoustic relation (19) remains valid on either the upper or the lower half of the
complex plane.

5 Bogoliubov modes

Elementary excitations are perturbations of the condensate, ripples on the macro-
scopic wave function ψ0 of the condensed atoms. The excitations constitute the
non-condensed part of the atomic gas. To describe elementary excitations, the total
many-body field operator ψ̂ of the atoms is split into two components, the con-
densate with the mean-field wave function ψ0 and the non-condensed part. The
mean-field wave function comprises the density profile ρ0 and the flow u, as

ψ0 =
√
ρ0 e

iS0 , u =
~

m
∇S0 . (29)

The atomic field operator ψ̂ is split into the condensate and the non-condensed part
according to the relation

ψ̂ = ψ0 + eiS0φ̂ . (30)

The non-condensed part consists of Bogoliubov modes uν and vν [8, 14, 15],

φ̂ =
∑

ν

(

uν âν + v∗ν â
†
ν

)

. (31)

The uν and vν are subject to the Bogoliubov-deGennes equations [8, 14, 15]. If one
requires that the Bogoliubov modes satisfy the orthonormality relations

∫

(u∗νuν′ − v∗νvν′) dz = δνν′ , (32)
∫

(uνvν′ − vνuν′) dz = 0 , (33)

then the âν and â†ν obey the commutation relations of Bose annihilation and creation
operators, as a consequence of the fundamental commutator of atoms with Bose
statistics

[

ψ̂(z), ψ̂†(z′)
]

= δ(z − z′) . (34)

Each pair of uν and vν characterizes the spatial shape and the evolution of an
excitation wave, and the Fock space of the âν and â†ν spans the state space of the
excitation quasiparticles.

To see how the Bogoliubov modes are related to sound waves, we write down the
macroscopic wave function of the condensate combined with one of the excitations,

ψ = ψ0 + eiS0(uν + v∗ν) . (35)

We represent ψ as

ψ =
√
ρ eiS , ρ = ρ0 + ρs , S = S0 + s , (36)
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where ρs denotes the local density of the sound wave and s is proportional to the
velocity potential

ϕ =
~

m
s . (37)

Assuming that ρs and s are small perturbations we get

uν + v∗ν =
√
ρ0

(

ρs

2ρ0

+ is

)

. (38)

Assuming further that uν and vν are stationary waves with frequency ω, we obtain
from our solution (18) of the hydrodynamic sound-wave equation and from the
linearized Bernoulli equation (10) the Bogoliubov modes

uν ∼ Aν

( ω

2αz
+
mc

~

)

ziω/αe−iωt ,

vν ∼ Aν

( ω

2αz
− mc

~

)

ziω/αe−iωt . (39)

These asymptotic expressions are valid as long as the elementary excitations are
sound waves with wave number (19). We show in the Appendix that this is the case
sufficiently far away from the turning points and on either the upper or the lower
half plane. Here the term ω/(2αz) in the expressions (39) is always small compared
with mc/~. For real and positive z we have

(−z)iω/α = e−(±2πω/α)ziω/α . (40)

The ± sign refers to the two ways in which we may circumvent the trans-acoustic
region, on the upper (+) or on the lower (−) half plane. Modes with the acoustic
asymptotics (39) throughout the upper half plane are suppressed on the left side of
the horizon and for positive frequencies ω and enhanced for negative ω. Modes with
the asymptotics (39) on the lower half plane show the opposite behavior.

6 Negative energy

Bogoliubov modes are normalized according to the scalar products (32) and (33).
Let us calculate the norm of the modes (39) of the sonic hole. The energy parameter
(27) is small and so is the extension of the trans-acoustic region around the horizon,
measured roughly by the location of the turning points (28). Consequently, we
can neglect the trans-acoustic contribution to the normalization integral (32). We
approximate the Bogoliubov modes by their asymptotic expressions (39), utilize the
relation (40), and get

∫

(u∗νuν′ − v∗νvν′) dz ∼ |Aν |2
(

∫ 0

−∞

+

∫ +∞

0

)

2ωkc

αz
zi(ω′−ω)/α dz

= |Aν |2
(

1 − e−(±2πω/α)
)

4πωkc δ(ω
′ − ω) . (41)

If we choose modes with the asymptotics (39) on the upper half plane the norm is
positive and the uν and vν may serve as proper Bogoliubov modes. We find the
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normalized amplitude

Aν =
[(

1 − e−2πω/α
)

4πωkc

]−1/2
. (42)

Remarkably, the Bogoliubov norm is positive also for modes with negative frequen-
cies. The Bogoliubov-deGennes equations have a well-known symmetry [14, 15]:
If the (uν , vν) are solutions then the complex-conjugated and interchanged modes,
(v∗ν , u

∗
ν), are solutions as well. Yet the norm of the conjugate modes is the nega-

tive norm of the original (uν , vν). In contrast, sonic black holes generate negative-
frequency modes with positive norm, which is the unusual feature that gives rise
to the acoustic analog of Hawking radiation [6]. We also see how the mentioned
symmetry of the Bogoliubov-deGennes equations [14, 15] appears in our case. If we
chose the uν and vν with the asymptotics (39) on the lower half plane we would get
negative normalization integrals (41) for both positive and negative frequencies.

The negative frequencies of the positive-norm Bogoliubov modes give rise to
negative energies in the Hamiltonian of the elementary excitations,

Ĥ =

∫

~ω
(

â†+â+ − â†−â−

)

N dω . (43)

Here and later the subscripts ± refer to positive and negative frequencies, respec-
tively, and N denotes the density of modes. We see that there is no natural ground
state of the elementary excitations. In practice, of course, the spectrum is limited by
the requirement (27) that the energies of the excitations ought to be much smaller in
magnitude than the condensate’s mean-field energy. We note that the Hamiltonian
(43) is invariant under the Bogoliubov transformations

â′± = â± cosh ξ − â†∓ sinh ξ ,

u′± = u± cosh ξ − v∗∓ sinh ξ ,

v′± = v± cosh ξ − u∗∓ sinh ξ . (44)

with an arbitrary real parameter ξ. In the case we choose

tanh ξ = e−πω/α (45)

we get a new set of modes, Eq. (39), with

A′
± ∼ Θ(±z)(4πωkc)

−1/2 . (46)

The Θ function indicates that the primed modes appear on either the left or on
the right side of the trans-acoustic region. Therefore, despite the trans-Planckian
problem, a sonic horizon exists, but at a less well-defined location, within |z| . |z0|,
and the horizon applies to a particular set of modes only.
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7 Hawking effect

The Bogoliubov transformations (44) relate one set of quasiparticles to another one,
both representing perfectly valid energy eigenvalues, yet their quasiparticle vacua
differ (the states |0〉 or |0′〉 that are annihilated by â± and â′±, respectively). This
ambiguity has direct physical consequences, because the cloud of non-condensed
atoms [26] depends on the vacuum state of the elementary excitations,

〈0| φ̂†φ̂ |0〉 =

∫

(

|v+|2 + |v−|2
)

N dω , (47)

〈0′| φ̂†φ̂ |0′〉 =

∫

(

|v′+|2 + |v′−|2
)

N dω

6= 〈0| φ̂†φ̂ |0〉 . (48)

In general relativity the notion of the vacuum is observer-dependent. For example,
the vacuum of empty space in Minkowski coordinates appears as a thermal field to
accelerated observers [5, 6, 31]. In the case of the black hole, the gravitational col-
lapse has created a state of quantum fields that an inward-falling observer perceives
as vacuum, yet an external observer sees as thermal radiation, Hawking radiation
[5, 6, 7]. In our case, the equivalent of the gravitational collapse, the formation of
the sonic horizon, chooses the quasiparticle vacuum, if the trans-sonic velocity pro-
file has initially been created from a condensate without a horizon. Such a process
must be sufficiently smooth to keep the condensate intact.

To analyze the quasiparticle vacuum, we use the Heisenberg picture of quan-
tum mechanics where observables evolve while the quantum state is invariant. We
describe the initial (and final) vacuum state with respect to one set of continuous
modes given before the formation of the horizon. In the Heisenberg picture these
modes evolve. We sort the initial modes into left- and right-moving modes that,
close to complex ∞, are analytic on the upper or on the lower half plane, respec-
tively, because here exp(ikz) converges for positive k on the upper and for negative
k on the lower half plane. The upstream modes we are interested in stem from
right-moving modes. The formation of the sonic horizon, a smooth process, cannot
fundamentally alter the analyticity of the vacuum modes. In particular, the process
can never create non-analytic modes of the type expressed in Eq. (46). Consequently,
the initial quasiparticle vacuum assumes the analytic modes of Eqs. (39) and (42).

Given this vacuum state, we determine the quantum depletion of the condensate.
We write the density of the non-condensed atoms in terms of the primed Bogoliubov
modes. As we have seen, these modes describe the set of elementary excitations that
exhibit the sonic horizon. We find that

〈0| φ̂†φ̂ |0〉 = ρ(|z|) , ρ(z) =

∫

[

(|u′+|2 + |v′+|2) n̄(ω) + |v′+|2
]

N dω . (49)

Here n̄(ω) denotes the average number of non-condensed atoms per excitation mode,

n̄(ω) =
1

e2πω/α − 1
=

1

e~ω/k
B

T − 1
. (50)
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The non-condensed atoms are Planck-distributed with the Hawking temperature
(1). Therefore, as soon as the condensate flows through the nozzle, breaking the
speed of sound, a thermal cloud of atoms is formed. This effect is the signature
of Hawking radiation for sonic holes in Bose-Einstein condensates. The thermal
cloud due to the Hawking effect should be observable when the initial temperature
of the atoms is below the Hawking temperature. On the other hand, one could
also regard the Hawking effect in the condensate as the quantum depletion (47) of
atoms at zero temperature with respect to the analytic modes (42) that transcend
the horizon. This feature reflects the ambiguity of the vacuum in general relativity.
Using techniques for measuring the population of Bogoliubov modes [32, 33], one
could perhaps demonstrate the ambiguity of the vacuum in the laboratory.

Finally we note that within our model sonic black holes are stable, provided
of course that the transsonic flow is not plagued by hydrodynamic instabilities.
In reality, elementary excitations interact with each other, giving rise to what is
known as Landau-Beliaev damping [34, 35, 36]. Since a sonic horizon does not
have a ground state, this damping mechanism will lead to the gradual evaporation
of the condensate. Therefore, Landau-Beliaev damping [34, 35, 36] plays the role
of black-hole evaporation. It is tempting to turn matters around and to approach
cosmological problems from the perspective of condensed-matter physics [37, 38, 39].
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Appendix

In this Appendix we examine the asymptotics of the Bogoliubov modes on the
complex plane. We use the semiclassical approximation [30, 40]

uν = Uν exp

(

i

∫

k dz − iωt

)

,

vν = Vν exp

(

i

∫

k dz − iωt

)

. (51)

The wavenumber k should obey Bogoliubov’s dispersion relation (21) including the
Doppler shift (4). We obtain four fundamental solutions of this fourth-order equa-
tion. Figure 2 shows the three branches of k that are relevant in our analysis. The
amplitudes Uν and Vν obey the relation [30, 40]

∂z

(

U2
ν − V 2

ν

)

v = 0 , (52)

where v denotes the group velocity (23) of the elementary excitation. Equation (52)
formulates the conservation law of the quasiparticle flux for stationary states [40]
if z is real, where U2

ν − V 2
ν gives |Uν |2 − |Vν |2 up to a constant phase factor. The

relation (52) can be extended to the complex z plane and to complex frequencies ω
[30]. Equation (52) implies that the amplitudes Uν and Vν diverge close to a turning
point z0 where v vanishes. Consequently, the semiclassical approximation breaks
down at the turning point [17]. The turning point causes significant scattering, i.e.

the conversion of one mode with a given k into two modes, one with wavenumber k
and the other one with a different wavenumber that satisfies the dispersion relation
as well. At the turning point the two branches coincide. To prove this, we regard
for a moment z as a function of k at constant frequencies ω = ω0, defined implicitly
by Eqs. (4), (16) and (21). We get

v =
∂ω

∂k
= u+

∂

∂k
(ω0 − uk) = −αk∂z

∂k
. (53)

We see that the function z(k) reaches extrema at the point z0 where v vanishes, i.e.

at the turning point. Close to the z0 we find after some algebra [30], by expanding
z into a power series in ε1/3,

z − z0 ∼ −3(k − k0)
2

8α
, k0 = 3

√
−4ε , (54)

to leading order. Consequently, each turning point connects two branches of the
wavenumber k. In general the mode conversion occurs near specific lines in the
complex plane, called Stokes lines in the mathematical literature [41]. Stokes lines,
originating from the turning point z0, are defined as the lines where the differences
between the phases

∫

k dz of the two connected k branches is purely imaginary. Here
one of the waves is exponentially small compared with the other. We obtain from
Eq. (54) that the difference between the two branches is proportional to the square
root of z − z0. Consequently, the phase difference is proportional to (z − z0)

3/2,
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giving rise to three Stokes lines from each turning point z0, as in the traditional case
of Schrödinger waves in one dimension [17, 42]. Figure 3 shows the Stokes lines for
the three turning points close to the horizon and for the branch cuts of k chosen in
Fig. 2.

At a Stokes line the phase difference between the two connected branches is
purely imaginary. One of the waves exponentially exceeds the other and, within
the semiclassical approximation, the smaller wave is totally overshadowed by the
larger one, if the larger wave is present. In general, the Bogoliubov modes consist
of a superposition of the four fundamental solutions that correspond to the four
branches of the dispersion relation

uν = c
A
u

A
+ c

B
u

B
+ c

C
u

C
+ c

D
u

D
,

vν = c
A
v

A
+ c

B
v

B
+ c

C
v

C
+ c

D
v

D
. (55)

The u
A

and v
A

refer to the k branch where k obeys the asymptotics (19), i.e. where
the wavenumber satisfies the dispersion relation (3) of sounds in moving fluids, tak-
ing into account the Doppler detuning (4) and where k corresponds to an upstream
wave. We call such Bogoliubov modes acoustic modes. When crossing a Stokes line,
the exponentially suppressed solution may gain an additional component that is pro-
portional to the coefficient of the exponentially enhanced solution [42]. If we wish to
construct Bogoliubov modes where only the exponentially smaller component exits
in the vicinity of a Stokes line we must put the coefficient of the larger one to zero.
In Fig. 3 the pairs of letters indicate which branches are connected by the lines, and
the first letter identifies the exponentially dominant branch. The picture shows that
with the choice of branch cuts made we can construct a Bogoliubov mode that is
acoustic on the upper half plane. Trans-acoustic physics is confined to the lower half
plane. On the other hand, if we chose other branch cuts of k we may get Bogoliubov
modes that are acoustic on the lower half plane and trans-acoustic on the upper one.
Therefore, according to Eq. (40), the choice of the k branch determines whether a
Bogoliubov mode is larger or smaller beyond the sonic horizon at the real axis, for
z < 0. Branch cuts of k are fairly arbitrary. Given the Bogoliubov mode on the right
side of the horizon, we cannot predict within the semiclassical approximation the
amplitude of the mode on the left side. Therefore, the two sides are causally discon-
nected. Within the semiclassical approximation, the horizon is a genuine horizon,
despite the acoustic analog of the notorious trans-Planckian problem [21, 22].
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u
Figure 1: Schematic diagram of a sonic horizon. A fluid is forced to move through a
constriction where the flow speed u becomes supersonic (dashed line). The constric-
tion may be formed by the walls of a tube or, if the fluid is an alkali Bose-Einstein
condensate, by a suitable trapping potential. The picture shows a Laval nozzle [1]
where a supersonic fluid is hydrodynamically stable.
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Figure 2: Wavenumbers k of elementary excitations around a sonic black-hole hori-
zon, analytically continued onto the complex plane. The figure shows three roots
of the dispersion relation [~2k2/(2m) + mc2]2 − ~

2[ω − (−c + αz)k]2 = m2c4 for
ω = 0.1 (mc2/~) and α = 0.5 (mc2/~), illustrating the branch cuts of k. The top
row displays the wavenumber of a sound wave that propagates against the current.
The picture indicates the characteristic ω/(αz) asymptotics away from the branch
points. The two lower rows display two trans-acoustic branches of k. The fourth
root of the dispersion relation is not shown, because it corresponds to the trivial
case of sound waves that propagate with the flow.
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A,C B,C B,A

C,A A,B C,B

C,B

C,A

A,B

Figure 3: Stokes lines of elementary excitations at a sonic black hole (dotted lines),
given the choice of branch cuts made in Fig. 2. The pairs of letters indicate which
branches of the superposition (52) are connected by the lines. The first letter of each
pair identifies the exponentially dominant branch. We construct a Bogoliubov mode
that is acoustic (component A) on the upper half plane by putting the coefficient
c

C
to zero on the C,A Stokes line originating from the left turning point.
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