10 research outputs found

    Transition metal-free direct hydrogenation of esters via a frustrated Lewis pair

    No full text
    ‘Frustrated Lewis pairs’ (FLPs) continue to exhibit unique reactivity for the reduction of organic substrates, yet to date the catalytic hydrogenation of an ester functionality has not been demonstrated. Here we report that iPr3SnNTf2 (1-NTf2; Tf = SO2CF3) is a more potent Lewis acid than the previously studied iPr3SnOTf; in an FLP with 2,4,6-collidine/2,6-lutidine (col/lut) this translates to faster H2 activation and the catalytic hydrogenolysis of an ester bond by a by a main-group compound, furnishing alcohol and ether (minor) products. The reaction outcome is sensitive to the steric and electronic properties of the substrate; CF3CO2Et and simple formates (HCO2Me, HCO2Et) are catalytically reduced, whereas related esters CF3CO2nBu and CH3CO2Et show only stoichiometric reactivity. A computational case study on the hydrogenation of CF3CO2Et and CH3CO2Et reveals that both share a common mechanistic pathway, however, key differences in the energies of a Sn-acetal intermediate and transition states emerge, favoring CF3CO2Et reduction. The alcohol products reversibly inhibit 1-NTf2/lut via formation of resting-state species 1-OR/[1·(1-OR)]+[NTf2]–, however the extra energy required to regenerate 1-NTf2/lut exacerbates the unfavorable reduction energy profile for CH3CO2Et, ultimately preventing turnover. These findings will assist the design of future main-group catalysts for ester hydrogenation, with improved performance

    Joint inversion of seismic and geoelectric data recorded in an underground coal mine

    No full text
    Until the present time the 'rock-coal-rock' layer sequence and offsets in coal-seams in underground coal mines have been detected with the aid of seismic waves and geoelectric measurements. In order to determine the geometrical and petrophysical parameters of the coal-seam situation, the data recorded using seismic and geoelectric methods have been inverted independently. In consequence, the inversion of partially inaccurate data resulted in a certain degree of ambiguity. This paper presents the first results of a joint inversion scheme to process underground vertical seismic profiling data, geolectric resistivity and resistance data. The joint inversion algorithm makes use of the damped least-squares method and its weighted version to solve the linearized set of equations for the seismic and geolectric unknowns. In order to estimate the accuracy and reliability of the derived geometrical and petrophysical layer parameters, both a model covariance matrix and a correlation matrix are calculated. The weighted least-squares algorithm is based on the method of most frequent values (MFV). The weight factors depend on the difference between measured data and those calculated by an iteration process. The joint inversion algorithm is tested by means of synthetic data. Compared to the damped least-squares algorithm, the MFV inversion leads to smaller estimation errors as well as lower sensitivities due to the choice of the initial model. It is shown that, compared to an independent inversion, the correlation between the model parameters is definitely reduced, while the accuracy of the parameter estimation is appreciably increased by the joint inversion process. Thus the ambiguity is significantly reduced. Finally, the joint inversion algorithm the MFV method is applied to underground field data. The model parameters can be derived with a sufficient degree of accuracy, even in the case of noisy data

    Chronomics, neuroendocrine feedsidewards and the recording and consulting of nowcasts - Forecasts of geomagnetics

    No full text
    A multi-center four-hourly sampling of many tissues for 7 days (00:00 on April 5-20:00 to April 11, 2004), on rats standardized for 1 month in two rooms on antiphasic lighting regimens happened to start on the day after the second extremum of a moderate double magnetic storm gauged by the planetary geomagnetic Kp index (which at each extremum reached 6.3 international [arbitrary] units) and by an equatorial index Dst falling to -112 and -81 nT, respectively, the latter on the first day of the sampling. Neuroendocrine chronomes (specifically circadian time structures) differed during magnetically affected and quiet days. The circadian melatonin rhythm had a lower MESOR and lower circadian amplitude and tended to advance in acrophase, while the MESOR and amplitude of the hypothalamic circadian melatonin rhythm were higher during the days with the storm. The circadian parameters of circulating corticosterone were more labile during the days including the storm than during the last three quiet days. Feedsidewards within the pineal-hypothalamic-adrenocortical network constitute a mechanism underlying physiological and probably also pathological associations of the brain and heart with magnetic storms. Investigators in many fields can gain from at least recording calendar dates in any publication so that freely available information on geomagnetic, solar and other physical environmental activity can be looked up. In planning studies and before starting, one may gain from consulting forecasts and the highly reliable nowcasts, respectively. © 2005 Elsevier SAS. All rights reserved

    Chronomics, neuroendocrine feedsidewards and the recording and consulting of nowcasts-forecasts of Geomagnetics.

    No full text
    A multi-center four-hourly sampling of many tissues for 7 days (00:00 on April 5–20:00 to April 11, 2004), on rats standardized for 1 month in two rooms on antiphasic lighting regimens happened to start on the day after the second extremum of a moderate double magnetic storm gauged by the planetary geomagnetic Kp index (which at each extremum reached 6.3 international [arbitrary] units) and by an equatorial index Dst falling to −112 and−81 nT, respectively, the latter on the first day of the sampling. Neuroendocrine chronomes (specifically circadian time structures) differed during magnetically affected and quiet days. The circadian melatonin rhythm had a lower MESOR and lower circadian amplitude and tended to advance in acrophase, while the MESOR and amplitude of the hypothalamic circadian melatonin rhythm were higher during the days with the storm. The circadian parameters of circulating corticosterone were more labile during the days including the storm than during the last three quiet days. Feedsidewards within the pineal-hypothalamic-adrenocortical network constitute a mechanism underlying physiological and probably also pathological associations of the brain and heart with magnetic storms. Investigators in many fields can gain from at least recording calendar dates in any publication so that freely available information on geomagnetic, solar and other physical environmental activity can be looked up. In planning studies and before starting, one may gain from consulting forecasts and the highly reliable nowcasts, respectively

    Chronomics, neuroendocrine feedsidewards and the recording and consulting of nowcasts - Forecasts of geomagnetics

    No full text
    A multi-center four-hourly sampling of many tissues for 7 days (00:00 on April 5-20:00 to April 11, 2004), on rats standardized for 1 month in two rooms on antiphasic lighting regimens happened to start on the day after the second extremum of a moderate double magnetic storm gauged by the planetary geomagnetic Kp index (which at each extremum reached 6.3 international [arbitrary] units) and by an equatorial index Dst falling to -112 and -81 nT, respectively, the latter on the first day of the sampling. Neuroendocrine chronomes (specifically circadian time structures) differed during magnetically affected and quiet days. The circadian melatonin rhythm had a lower MESOR and lower circadian amplitude and tended to advance in acrophase, while the MESOR and amplitude of the hypothalamic circadian melatonin rhythm were higher during the days with the storm. The circadian parameters of circulating corticosterone were more labile during the days including the storm than during the last three quiet days. Feedsidewards within the pineal-hypothalamic-adrenocortical network constitute a mechanism underlying physiological and probably also pathological associations of the brain and heart with magnetic storms. Investigators in many fields can gain from at least recording calendar dates in any publication so that freely available information on geomagnetic, solar and other physical environmental activity can be looked up. In planning studies and before starting, one may gain from consulting forecasts and the highly reliable nowcasts, respectively. © 2005 Elsevier SAS. All rights reserved

    Gas Analysis

    No full text
    corecore