531 research outputs found

    Exoplanet Research with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Full text link
    When the Stratospheric Observatory for Infrared Astronomy (SOFIA) was conceived and its first science cases defined, exoplanets had not been detected. Later studies, however, showed that optical and near-infrared photometric and spectrophotometric follow-up observations during planetary transits and eclipses are feasible with SOFIA's instrumentation, in particular with the HIPO-FLITECAM and FPI+ optical and near infrared (NIR) instruments. Additionally, the airborne-based platform SOFIA has a number of unique advantages when compared to other ground- and space-based observatories in this field of research. Here we will outline these theoretical advantages, present some sample science cases and the results of two observations from SOFIA's first five observation cycles -- an observation of the Hot Jupiter HD 189733b with HIPO and an observation of the Super-Earth GJ 1214b with FLIPO and FPI+. Based on these early products available to this science case, we evaluate SOFIA's potential and future perspectives in the field of optical and infrared exoplanet spectrophotometry in the stratosphere.Comment: Invited review chapter, accepted for publication in "Handbook of Exoplanets" edited by H.J. Deeg and J.A. Belmonte, Springer Reference Work

    On the Use of Multipole Expansion in Time Evolution of Non-linear Dynamical Systems and Some Surprises Related to Superradiance

    Full text link
    A new numerical method is introduced to study the problem of time evolution of generic non-linear dynamical systems in four-dimensional spacetimes. It is assumed that the time level surfaces are foliated by a one-parameter family of codimension two compact surfaces with no boundary and which are conformal to a Riemannian manifold C. The method is based on the use of a multipole expansion determined uniquely by the induced metric structure on C. The approach is fully spectral in the angular directions. The dynamics in the complementary 1+1 Lorentzian spacetime is followed by making use of a fourth order finite differencing scheme with adaptive mesh refinement. In checking the reliability of the introduced new method the evolution of a massless scalar field on a fixed Kerr spacetime is investigated. In particular, the angular distribution of the evolving field in to be superradiant scattering is studied. The primary aim was to check the validity of some of the recent arguments claiming that the Penrose process, or its field theoretical correspondence---superradiance---does play crucial role in jet formation in black hole spacetimes while matter accretes onto the central object. Our findings appear to be on contrary to these claims as the angular dependence of a to be superradiant scattering of a massless scalar field does not show any preference of the axis of rotation. In addition, the process of superradiance, in case of a massless scalar field, was also investigated. On contrary to the general expectations no energy extraction from black hole was found even though the incident wave packets was fine tuned to be maximally superradiant. Instead of energy extraction the to be superradiant part of the incident wave packet fails to reach the ergoregion rather it suffers a total reflection which appears to be a new phenomenon.Comment: 49 pages, 11 figure

    The power of wavelets in analysis of transit and phase curves in presence of stellar variability and instrumental noise I. Method and validation

    Full text link
    Stellar photometric variability and instrumental effects, like cosmic ray hits, data discontinuities, data leaks, instrument aging etc. cause difficulties in the characterization of exoplanets and have an impact on the accuracy and precision of the modelling and detectability of transits, occultations and phase curves. This paper aims to make an attempt to improve the transit, occultation and phase-curve modelling in the presence of strong stellar variability and instrumental noise. We invoke the wavelet-formulation to reach this goal. We explore the capabilities of the software package Transit and Light Curve Modeller (TLCM). It is able to perform a joint radial velocity and light curve fit or light curve fit only. It models the transit, occultation, beaming, ellipsoidal and reflection effects in the light curves (including the gravity darkening effect, too). The red-noise, the stellar variability and instrumental effects are modelled via wavelets. The wavelet-fit is constrained by prescribing that the final white noise level must be equal to the average of the uncertainties of the photometric data points. This helps to avoid the overfit and regularizes the noise model. The approach was tested by injecting synthetic light curves into Kepler's short cadence data and then modelling them. The method performs well over a certain signal-to-noise (S/N) ratio. In general a S/N ratio of 10 is needed to get good results but some parameters requires larger S/N, some others can be retrieved at lower S/Ns. We give limits in terms of signal-to-noise ratio for every studied system parameter which is needed to accurate parameter retrieval. The wavelet-approach is able to manage and to remove the impacts of data discontinuities, cosmic ray events, long-term stellar variability and instrument ageing, short term stellar variability and pulsation and flares among others. (...)Comment: Submitted to A&A. 11 pages, 14 figure

    Density Functional Molecular Computations on Protonated Serotonin in the Gas Phase and Various Solvent Media

    Get PDF
    5-Hydroxytryptamine (serotonin) was geometry optimized at the B3YP/6-31G(d) level of theory to determine the energetically most favourable conformations of the aromatic hydroxyl group and the protonated ethylamine side chain. The hydroxyl group was found to be most stable at anti for all conformations, and the two lowest energy gas phase conformers found were: chi(2) = g(+), chi(3) = g(-) and chi(2) = g(-), chi(3) = g(+). The protonated amino group was found equally stable at g+, g- and anti. The transition structures linking each gas phase minimum were also computed. Minima found were subjected to solvation calculations in chloroform, DMSO, ethanol and water, which shifted their relative stabilities. (C) 2002 Elsevier Science B.V. All rights reserved

    Density Functional Molecular Study on the Full Conformational Space of the S-4-(2-Hydroxypropoxy)carbazol Fragment of Carvedilol (1-(9H−Carbazol-4-yloxy)-3- [2-(2-methoxyphenoxy)ethylamino]-2-propanol) in Vacuum and in Different Solvent Media

    Get PDF
    Density functional theory (DFT) conformational analysis was carried out on the potential energy hypersurface (PEHS) of the carbazole-containing molecular fragment, S-4-(2-hydroxypropoxy)-carbazol, of the chiral cardiovascular drug molecule carvedilol, (1-(9H-carbazol-4-yloxy)-3-[2-(2-methoxy-phenoxy)ethylamino]-2-propanol) . The PEHS was computed in vacuum, chloroform, ethanol, DMSO, and water at the B3LYP/6-31G(d) level of theory. The carbazole ring system was confirmed to be planar, and the resultant PEHS in vacuum contained 19 converged minima, of which the global minima possessed a conformation with chi(1), chi(2), and chi(3) in the anti position and chi(10) in the g position. Conformer stability for the S-4-(2-hydroxypropoxy)carbazol PEHS was influenced by intramolecular hydrogen bonding. Tomasi PCM reaction-field calculations revealed that the lowest SCF energies, relative conformer energies, and solvation free energies (DeltaG (solvation)) for the S-4-(2-hydroxypropoxy)carbazol PEHS were in protic solvents, ethanol and water, because of the larger hydrogen bond donor values of these solvents, which aid in stabilization of the dipole moment created by the carbazole ring system and the oxygen and nitrogen atoms. However, solvent effects contributed most significantly to the stabilization of S-4-(2-hydroxypropoxy)carbazol conformers that contained no internal hydrogen bonding, whereas solvent effects were not as important for conformers that contained intramolecular hydrogen bonding

    Open Charm Enhancement in Pb+Pb Collisions at SPS

    Get PDF
    The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/\psi multiplicity in Pb+Pb collisions at 158 A GeV are used for the model prediction of the open charm yield. We find a strong enhancement of the open charm production, by a factor of about 2--4, over the standard hard-collision model extrapolation from nucleon-nucleon to nucleus-nucleus collisions. A possible mechanism of the open charm enhancement in A+A collisions at the SPS energies is proposed.Comment: 4 pages, Late

    Gravitational waves from spinning eccentric binaries

    Full text link
    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relation we show that, on contrary to the general expectations, the post-Newtonian approximation should not be applied once the post-Newtonian parameter gets beyond the critical value 0.080.1\sim 0.08-0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems---which could be formed e.g. in various many-body interactions in the galactic halo---we have found that they possess very specific characteristics which may be used to identify these type of binary systems.Comment: 37 pages, 18 figures, submitted to Class. Quantum Gra

    Strange hyperon and antihyperon production from quark and string-rope matter

    Get PDF
    Hyperon and antihyperon production is investigated using two microscopical models: {\bf (1)} the fast hadronization of quark matter as given by the ALCOR model; {\bf (2)} string formation and fragmentation as in the HIJING/B model. We calculate the particle numbers and momentum distributions for Pb+Pb collisions at CERN SPS energies in order to compare the two models with each other and with the available experimental data. We show that these two theoretical approaches give similar yields for the hyperons, but strongly differ for antihyperons.Comment: 11 pages, Latex, 3 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199

    Revisiting the transits of CoRoT-7b at a lower activity level

    Get PDF
    CoRoT-7b, the first super-Earth with measured radius discovered, has opened the new field of rocky exoplanets characterisation. To better understand this interesting system, new observations were taken with the CoRoT satellite. During this run 90 new transits were obtained in the imagette mode. These were analysed together with the previous 151 transits obtained in the discovery run and HARPS radial velocity observations to derive accurate system parameters. A difference is found in the posterior probability distribution of the transit parameters between the previous CoRoT run (LRa01) and the new run (LRa06). We propose this is due to an extra noise component in the previous CoRoT run suspected to be transit spot occultation events. These lead to the mean transit shape becoming V-shaped. We show that the extra noise component is dominant at low stellar flux levels and reject these transits in the final analysis. We obtained a planetary radius, Rp=1.585±0.064RR_p= 1.585\pm0.064\,R_{\oplus}, in agreement with previous estimates. Combining the planetary radius with the new mass estimates results in a planetary density of 1.19±0.27ρ 1.19 \pm 0.27\, \rho_{\oplus} which is consistent with a rocky composition. The CoRoT-7 system remains an excellent test bed for the effects of activity in the derivation of planetary parameters in the shallow transit regime.Comment: 13 pages, 13 figures, accepted to A&
    corecore