424 research outputs found

    Context Tree Selection: A Unifying View

    Get PDF
    The present paper investigates non-asymptotic properties of two popular procedures of context tree (or Variable Length Markov Chains) estimation: Rissanen's algorithm Context and the Penalized Maximum Likelihood criterion. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning overestimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The underestimation properties rely on loss-of-memory and separation conditions of the process. These results improve and generalize the bounds obtained previously. Context tree models have been introduced by Rissanen as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics

    Deformed Statistics Kullback-Leibler Divergence Minimization within a Scaled Bregman Framework

    Full text link
    The generalized Kullback-Leibler divergence (K-Ld) in Tsallis statistics [constrained by the additive duality of generalized statistics (dual generalized K-Ld)] is here reconciled with the theory of Bregman divergences for expectations defined by normal averages, within a measure-theoretic framework. Specifically, it is demonstrated that the dual generalized K-Ld is a scaled Bregman divergence. The Pythagorean theorem is derived from the minimum discrimination information-principle using the dual generalized K-Ld as the measure of uncertainty, with constraints defined by normal averages. The minimization of the dual generalized K-Ld, with normal averages constraints, is shown to exhibit distinctly unique features.Comment: 16 pages. Iterative corrections and expansion

    Equivalence between two-qubit entanglement and secure key distribution

    Full text link
    We study the problem of secret key distillation from bipartite states in the scenario where Alice and Bob can only perform measurements at the single-copy level and classically process the obtained outcomes. Even with these limitations, secret bits can be asymptotically distilled by the honest parties from any two-qubit entangled state, under any individual attack. Our results point out a complete equivalence between two-qubit entanglement and secure key distribution: a key can be established through a one-qubit channel if and only if it allows to distribute entanglement. These results can be generalized to higher dimension for all those states that are one-copy distillable.Comment: 5 pages, REVTEX. Accepted version + added appendix. Proof of the main result and discussion improved, conclusions unchange

    Strong Secrecy for Multiple Access Channels

    Full text link
    We show strongly secret achievable rate regions for two different wiretap multiple-access channel coding problems. In the first problem, each encoder has a private message and both together have a common message to transmit. The encoders have entropy-limited access to common randomness. If no common randomness is available, then the achievable region derived here does not allow for the secret transmission of a common message. The second coding problem assumes that the encoders do not have a common message nor access to common randomness. However, they may have a conferencing link over which they may iteratively exchange rate-limited information. This can be used to form a common message and common randomness to reduce the second coding problem to the first one. We give the example of a channel where the achievable region equals zero without conferencing or common randomness and where conferencing establishes the possibility of secret message transmission. Both coding problems describe practically relevant networks which need to be secured against eavesdropping attacks.Comment: 55 page

    Classical no-cloning theorem under Liouville dynamics by non-Csisz\'ar f-divergence

    Full text link
    The Csisz\'ar f-divergence, which is a class of information distances, is known to offer a useful tool for analysing the classical counterpart of the cloning operations that are quantum mechanically impossible for the factorized and marginality classical probability distributions under Liouville dynamics. We show that a class of information distances that does not belong to this divergence class also allows for the formulation of a classical analogue of the quantum no-cloning theorem. We address a family of nonlinear Liouville-like equations, and generic distances, to obtain constraints on the corresponding functional forms, associated with the formulation of classical analogue of the no-cloning principle.Comment: 6 pages, revised, published versio

    The Bregman chord divergence

    Full text link
    Distances are fundamental primitives whose choice significantly impacts the performances of algorithms in machine learning and signal processing. However selecting the most appropriate distance for a given task is an endeavor. Instead of testing one by one the entries of an ever-expanding dictionary of {\em ad hoc} distances, one rather prefers to consider parametric classes of distances that are exhaustively characterized by axioms derived from first principles. Bregman divergences are such a class. However fine-tuning a Bregman divergence is delicate since it requires to smoothly adjust a functional generator. In this work, we propose an extension of Bregman divergences called the Bregman chord divergences. This new class of distances does not require gradient calculations, uses two scalar parameters that can be easily tailored in applications, and generalizes asymptotically Bregman divergences.Comment: 10 page

    Photon-Number-Splitting versus Cloning Attacks in Practical Implementations of the Bennett-Brassard 1984 protocol for Quantum Cryptography

    Full text link
    In practical quantum cryptography, the source sometimes produces multi-photon pulses, thus enabling the eavesdropper Eve to perform the powerful photon-number-splitting (PNS) attack. Recently, it was shown by Curty and Lutkenhaus [Phys. Rev. A 69, 042321 (2004)] that the PNS attack is not always the optimal attack when two photons are present: if errors are present in the correlations Alice-Bob and if Eve cannot modify Bob's detection efficiency, Eve gains a larger amount of information using another attack based on a 2->3 cloning machine. In this work, we extend this analysis to all distances Alice-Bob. We identify a new incoherent 2->3 cloning attack which performs better than those described before. Using it, we confirm that, in the presence of errors, Eve's better strategy uses 2->3 cloning attacks instead of the PNS. However, this improvement is very small for the implementations of the Bennett-Brassard 1984 (BB84) protocol. Thus, the existence of these new attacks is conceptually interesting but basically does not change the value of the security parameters of BB84. The main results are valid both for Poissonian and sub-Poissonian sources.Comment: 11 pages, 5 figures; "intuitive" formula (31) adde

    Exponential lower bound on the highest fidelity achievable by quantum error-correcting codes

    Full text link
    On a class of memoryless quantum channels which includes the depolarizing channel, the highest fidelity of quantum error-correcting codes of length n and rate R is proven to be lower bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R', which implies R' is a lower bound on the quantum capacity.Comment: Ver.4. In vers.1--3, I claimed Theorem 1 for general quantum channels. Now I claim this only for a slight generalization of depolarizing channel in this paper because Lemma 2 in vers.1--3 was wrong; the original general statement is proved in quant-ph/0112103. Ver.5. Text sectionalized. Appeared in PRA. The PRA article is typographically slightly crude: The LaTeX symbol star, used as superscripts, was capriciously replaced by the asterisk in several places after my proof readin

    Distributions attaining secret key at a rate of the conditional mutual information

    Full text link
    © International Association for Cryptologic Research 2015. In this paper we consider the problem of extracting secret key from an eavesdropped source pXY Z at a rate given by the conditional mutual information. We investigate this question under three different scenarios: (i) Alice (X) and Bob (Y) are unable to communicate but share common randomness with the eavesdropper Eve (Z), (ii) Alice and Bob are allowed one-way public communication, and (iii) Alice and Bob are allowed two-way public communication. Distributions having a key rate of the conditional mutual information are precisely those in which a “helping” Eve offers Alice and Bob no greater advantage for obtaining secret key than a fully adversarial one. For each of the above scenarios, strong necessary conditions are derived on the structure of distributions attaining a secret key rate of I(X: Y |Z). In obtaining our results, we completely solve the problem of secret key distillation under scenario (i) and identify H(S|Z) to be the optimal key rate using shared randomness, where S is the GĂ cs-Körner Common Information. We thus provide an operational interpretation of the conditional GĂ cs- Körner Common Information. Additionally, we introduce simple example distributions in which the rate I(X: Y |Z) is achievable if and only if two-way communication is allowed

    Practical Evaluation of Security for Quantum Key Distribution

    Full text link
    Many papers proved the security of quantum key distribution (QKD) system, in the asymptotic framework. The degree of the security has not been discussed in the finite coding-length framework, sufficiently. However, to guarantee any implemented QKD system requires, it is needed to evaluate a protocol with a finite coding-length. For this purpose, we derive a tight upper bound of the eavesdropper's information. This bound is better than existing bounds. We also obtain the exponential rate of the eavesdropper's information. Further, we approximate our bound by using the normal distribution.Comment: The manuscript has been modfie
    • 

    corecore