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Abstract

Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization
of Markov models. Since then, they have been widely used in applied probability and statistics. The
present paper investigates non-asymptotic properties of two popular procedures of context tree estimation:
Rissanen’s algorithm Context and penalized maximum likelihood. First showing how they are related,
we prove finite horizon bounds for the probability of over- and under-estimation. Concerning over-
estimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation
inequalities for empirical probabilities of independent interest. The under-estimation properties rely on
classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds
obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi
(2010) [22], refining asymptotic results of Bühlmann and Wyner (1999) [4] and Csiszár and Talata
(2006) [9].
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Context tree models (CTM), first introduced by Jorma Rissanen in [25] as efficient tools
in Information Theory, have been successfully studied and used since then in many fields of
Probability and Statistics, including Bioinformatics [2,5], Universal Coding [27], Mathematical
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Statistics [4] or Linguistics [15]. Sometimes also called Variable Length Markov Chain (VLMC),
a context tree process is informally defined as a Markov chain whose memory length depends on
past symbols. This property makes it possible to represent the set of memory sequences as a tree,
called the context tree of the process.

A remarkable tradeoff between expressivity and simplicity explains this success: no more
difficult to handle than Markov chains, they appear to be much more flexible and parsimonious,
including memory only where necessary. Not only do they provide more efficient models for
fitting the data: it appears also that, in many applications, the shape of the context tree has a
natural and informative interpretation. In Bioinformatics, the contexts trees of a sample have been
useful to test the relevance of protein families databases [5] and in Linguistics, tree estimation
highlights structural discrepancies between Brazilian and European Portuguese [15].

Of course, practical use of CTM requires the possibility of constructing efficient estimators
of the model T0 generating the data. It could be feared that, as a counterpart of the model
multiplicity, increased difficulty would be encountered in model selection. Actually, this is not
the case, and soon several procedures have been proposed and proved to be consistent. Roughly
speaking, two families of context tree estimators are available. The first family, derived from the
so-called algorithm Context introduced by Rissanen in [25], is based on the idea of tree pruning.
They are somewhat reminiscent of the CART [3] pruning procedures: a measure of discrepancy
between a node’s children determines whether they have to be removed from the tree or not.
The second family of estimators are based on a classical approach of mathematical statistics:
Penalized Maximum Likelihood (PML). For each possible model, a criterion is computed which
balances the quality of fit and the complexity of the model. In the framework of Information
Theory, these procedures can be interpreted as derivations of the Minimum Description Length
principle [1].

In the case of bounded memory processes, the problem of consistent estimation is clear: an
estimator T̂ is strongly consistent if it is equal to T0 eventually almost surely as the sample size
grows to infinity. As soon as 1983, Rissanen proved consistency results for the algorithm Context
in this case. But later, the possibility of handling infinite memory processes was also addressed.
In [9], an estimator T̂ is called strongly consistent if for every positive integer K , its truncation
T̂|K at level K is equal to the truncation T0|K of T0 eventually almost surely. With this definition,
PML estimators are shown to be strongly consistent if the penalties are appropriately chosen and
if the maximization is restricted to a proper set of models. This last restriction was proven to be
unnecessary in the finite memory case [19].

More recently, the problem of deriving non-asymptotic bounds for the probability of incorrect
estimation was considered. In [18], non-universal inequalities were derived for a version of the
algorithm Context in the case of finite context trees. These results were generalized to the case of
infinite trees in [17], and to PML estimators in [22]. Using recent advances in weak dependence
theory, all these results strongly rely on mixing hypotheses of the process.

For all these results, a distinction has to be made between two potential errors: under- and
over-estimation. A context of T0 is said to be under-estimated if one of its proper suffixes appears
in the estimated tree T̂ , whereas it is called over-estimated if it appears as an internal node of T̂ .
Over- and under-estimation appear to be of different natures: while under-estimation is eventually
avoided by the existence of a strictly positive distance between a process and all processes with
strictly smaller context trees, controlling over-estimation requires bounds on the fluctuations of
empirical processes.

In this article, we present a unified analysis of the two families of context tree estimators.
We contribute to a completely non-asymptotic analysis: we show that for appropriate parameters
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and measure of discrepancy, the PML estimator is always smaller than the estimator given by
the algorithm Context. To our knowledge, this is the first result comparing this two context tree
selection methods.

Without restrictions on the (possibly infinite) context tree T0, we prove that both methods
provide estimators that are with high probability sub-trees of T0 (i.e., a node that is not in T0 does
not appear in T̂ ). These bounds are more precise and do not require the conditions assumed in
[18,17,22]. For this purpose, we derive “self-normalized” non-asymptotic deviation inequalities,
using martingale techniques inspired from proofs of the Law of the Iterated Logarithm
[24,8]. These inequalities prove interesting in other fields, as for instance in reinforcement
learning [21,14]. On the other hand, we derive upper bounds on the probability of under-
estimation by assuming classical mixing conditions on the process generating the sample: with
high probability, T̂ contains every node of T0 at moderate height. This result is based on
exponential inequalities derived for a wider class of processes than in [18,17,22].

Our upper bounds on the probability of over- and under-estimation imply strong consistency
of the PML estimators for a larger class of penalizing functions than in [22]. Similarly, in the
case of the algorithm Context the strong consistency can also be derived for suitable threshold
parameters, generalizing the convergence in probability for this estimator obtained previously
in [12].

The paper is organized as follows. In Section 2 we set notation and definitions, we describe
in detail the algorithms and we state our main results. The proof of these results is given in
Section 3. In Section 4 we briefly discuss our results. Appendix A contains the statement and
proof of the self-normalized deviation inequalities and Appendix B is devoted to the presentation
of exponential inequalities for weak dependent processes.

2. Notations and results

In what follows, A is a finite alphabet; its size is denoted by |A|. A j denotes the set of all
sequences of length j over A, in particular A0 has only one element, the empty sequence. We
denote by A∗

=


k≥0 Ak the set of all finite sequences on alphabet A and A∞ will denote the set
of all semi-infinite sequences v = (. . . , v−2, v−1) of symbols in A. The length of the sequence
w ∈ A∗ is |w|. For 1 ≤ i ≤ j ≤ |w|, we denote w

j
i = (wi , . . . , w j ) ∈ A j−i+1 and v−1

−∞

denotes the semi-infinite sequence (. . . , v−2, v−1) ∈ A∞. Given v ∈ A∗
∪ A∞ and w ∈ A∗,

we denote by vw the sequence obtained by concatenating the two sequences v and w. We say
that the sequence s ∈ A∗ is a suffix of the sequence w ∈ A∗

∪ A∞ if there exists a sequence
u ∈ A∗

∪ A∞ such that w = us. In this case we write w ≽ s or s ≼ w. When |u| ≥ 1 we say
that s is a proper suffix of w and we write w ≻ s or s ≺ w.

A set T ⊂ A∗
∪ A∞ is a tree if no sequence s ∈ T is a proper suffix of another sequence

w ∈ T . The height of the tree T is defined as

h(T ) = sup{|w| : w ∈ T }.

If h(T ) < +∞ we say that T is bounded and we denote by |T | the cardinality of T . If
h(T ) = +∞ we say that T is unbounded. The elements of T are also called the leaves of
T . An internal node of T is a proper suffix of a leaf. For any sequence w ∈ A∗

∪ A∞ and for any
tree T , we define the tree Tw as the set of leaves in T which have w as a suffix, that is

Tw = {u ∈ T : u ≽ w}.

Given a tree T and an integer K we will denote by T |K the tree T truncated to level K , that is
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T |K = {w ∈ T : |w| ≤ K } ∪ {w ∈ AK : w ≺ u for some u ∈ T }.

Given two trees T1 and T2 we say that T1 is included in T2 (denoted by T1 ≼ T2 or T2 ≽ T1) if
for any sequence w ∈ T1 there exists a sequence u ∈ T2 such that w ≼ u; in other words, all
leaves of T1 are either leaves or internal nodes of T2.

Consider a stationary ergodic stochastic process {X t : t ∈ Z} over A. Given a sequence
w ∈ A∗ we denote by

p(w) = P(X |w|

1 = w)

the stationary probability of the cylinder defined by the sequence w. If p(w) > 0 we write

p(a|w) = P(X0 = a | X−1
−|w|

= w).

Definition 2.1. A sequence w ∈ A∗ is a finite context for the process {X t : t ∈ Z} if it satisfies

1. p(w) > 0;
2. for any sequence v ∈ A∗ such that p(v) > 0 and v ≽ w,

P(X0 = a | X−1
−|v|

= v) = p(a|w), for all a ∈ A;

3. no proper suffix of w satisfies 1 and 2.

An infinite context is a semi-infinite sequence w−1
−∞ ∈ A∞ such that any of its finite suffixes

w−1
− j , j = 1, 2, . . . is a context. In what follows the term context will refer to a finite or infinite

context.

It can be seen that the set of all contexts of the process {X t : t ∈ Z} is a tree. This is called the
context tree of the process. For example, the context tree of an i.i.d. process is A0 and the context
tree of a generic Markov chain of order 1 is A1

= A. In what follows, we will denote by T0 the
context tree of the process {X t : t ∈ Z}.

Let d ≤ n be positive integers. Let X−d+1, . . . , X0, X1, . . . , Xn be a sequence distributed
according to P. For any sequence w ∈ A∗ and any symbol a ∈ A we denote by Nn(w, a) the
number of occurrences of symbol a in Xn

1 that are preceded by an occurrence of w, that is:

Nn(w, a) =

n−
t=1

1{X t−1
t−|w|

= w, X t = a}. (2.2)

The sum
∑

a∈A Nn(w, a) is denoted by Nn(w).
We will denote by Vn the set of all sequences w ∈ A∗ that appear at least once in the sample,

that is

Vn = {w ∈ A∗: Nn(w) ≥ 1}.

Definition 2.3. We will say that a tree T ⊂ Vn is acceptable if it satisfies the following
conditions:

1. h(T ) ≤ d; and
2. every sequence w ∈ A∗ such that Nn(w) ≥ 1 belongs to T or has a proper suffix that belongs

to T .
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Then, our set of candidate trees, denoted by Tn , will be the set of all acceptable trees. Our
goal is to select a tree T ∈ Tn as close as possible to T0, in some sense that will be formally
given below. Note that d may depend on n, so that the set of candidate trees is allowed to grow
with the sample size. The symbols X−d+1, . . . , X0 are only observed to ensure that, for every
candidate tree T , the context of X i in T is well defined, for every i = 1, . . . , n. Alternatively, if
X−d+1, . . . , X0 were not assumed observed, similar results would be obtained by using quasi-
maximum likelihood estimators [16]. Given a tree T ⊂ ∪

d
j=1 A j , the maximum likelihood of the

sequence X1, . . . , Xn is given by

P̂ML,T (Xn
1 ) =

∏
w∈T

∏
a∈A

p̂n(a|w)Nn(w,a), (2.4)

where the empirical probabilities p̂n(a|w) are

p̂n(a|w) =
Nn(w, a)

Nn(w)
(2.5)

if Nn(w) > 0 and p̂n(a|w) = 1/|A| otherwise. For any sequence w ∈ A∗ we define

P̂ML,w(Xn
1 ) =

∏
a∈A

p̂n(a|w)Nn(w,a).

Hence, we have

P̂ML,T (Xn
1 ) =

∏
w∈T

P̂ML,w(xn
1 ).

In order to measure discrepancy between two probability measures over A we use the
Kullback–Leibler divergence, defined for two probability measures P and Q on A by

D(P; Q) =

−
a∈A

P(a) log
P(a)

Q(a)

where, by convention, P(a) log P(a)
Q(a)

= 0 if P(a) = 0 and P(a) log P(a)
Q(a)

= +∞ if P(a) >

Q(a) = 0.

2.1. The algorithm Context

The algorithm Context introduced by Rissanen in [25] computes, for each node of a given
tree, a discrepancy measure between the transition probability associated to this context and the
corresponding transition probabilities of the nodes obtained by concatenating a single symbol to
the context. Beginning with the largest leaves of a candidate tree, if the discrepancy measure is
greater than a given threshold, the contexts are maintained in the tree; otherwise, they are pruned.
The procedure continues until no more pruning of the tree can be performed.

For all sequences w ∈ Vn let

∆n(w) =

−
b:bw∈Vn

Nn(bw)D( p̂n(·|bw); p̂n(·|w)).

Remark 2.6. We use here the original choice of divergence ∆n(w) proposed by Rissanen in [25],
but other possibilities have been proposed in the literature (see for instance [4,18]).
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We will denote the threshold used in algorithm Context on samples of length n by δn , where
(δn)n∈N is a sequence of positive real numbers such that δn → +∞ and δn/n → 0 when
n → +∞. For a sequence Xn

1 , let Cw(Xn
1 ) ∈ {0, 1} be an indicator function defined for all

w ∈ Vn by the following induction:

Cw(Xn
1 ) =


0, if Nn(w) ≤ 1 or |w| ≥ d,

max{1{∆n(w) ≥ δn}, max
b∈A

Cbw(Xn
1 )}, if Nn(w) > 1 and |w| < d. (2.7)

With these definitions, the context tree estimator T̂C (Xn
1 ) is the set given by

T̂C (Xn
1 ) = {w ∈ Vn : Cw(Xn

1 ) = 0 and Cu(Xn
1 ) = 1 for all u ≺ w}. (2.8)

2.2. The penalized maximum likelihood criterion

The penalized maximum likelihood criterion for the sequence Xn
1 is defined by

T̂PML(Xn
1 ) = arg max

T ∈Tn


log P̂ML,T (Xn

1 ) − |T | f (n)


, (2.9)

where f (n) is some positive function such that f (n) → +∞ and f (n)/n → 0 when n → ∞.
This class of context tree estimators was first considered by Csiszár and Talata in [9], who

introduced the Bayesian Information Criterion (BIC) for context trees and proved its consistency.
The BIC leads to the choice of the penalty function f (n) = (|A| − 1) log(n)/2. It may first
appear practically impossible to compute T̂PML(Xn

1 ), because the maximization in (2.9) must be
performed over the set of all candidate trees. Fortunately, Csiszár and Talata showed in their
article [9] how to adapt the Context Tree Maximizing (CTM) method [27] in order to obtain
a simple and efficient algorithm computing T̂PML(Xn

1 ). As the representation of the estimator
T̂PML(Xn

1 ) given by this algorithm is important for the proof of our results, we briefly present it
here. Define recursively, for any w ∈ Vn , with |w| < d , the value

Vw(Xn
1 ) = max


e− f (n)P̂ML,w(Xn

1 ),
∏

b∈A:bw∈Vn

Vbw(Xn
1 )


(2.10)

and the indicator

Xw(Xn
1 ) = 1

 ∏
b∈A:bw∈Vn

Vbw(Xn
1 ) > e− f (n)P̂ML,w(Xn

1 )


. (2.11)

By convention, if {b ∈ A: bw ∈ Vn} = ∅ or if |w| = d then Vw(Xn
1 ) = e− f (n)P̂ML,w(Xn

1 ) and
Xw(Xn

1 ) = 0. As shown in [9], it holds that

T̂PML(Xn
1 ) = {w ∈ Vn : Xw(Xn

1 ) = 0 and Xu(Xn
1 ) = 1 for all u ≺ w}. (2.12)

2.3. Results

In this subsection we present the main results of this article. First, we show that the empirical
tree given by the algorithm Context is always included in the tree given by the penalized
maximum likelihood estimator, if the threshold δn is smaller than the penalization function f (n).
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Proposition 2.13. For any n ≥ 1 and all sequences Xn
1 , if δn ≤ f (n) then

T̂PML(Xn
1 ) ≼ T̂C (Xn

1 ).

In the sequel we will assume that the cutoff sequence of the algorithm Context equals the
penalization term of the penalized maximum likelihood estimator, in order to allow a unified
treatment of the two algorithms. That is, we will assume that δn = f (n) for any n ≥ 1.

We now state a new bound on the probability of over-estimation that does not require any
mixing hypotheses on the underlying process.

Theorem 2.14. For every n ≥ 1 it holds that

P


T̂ (Xn
1 ) ≼ T0


≥ 1 − e


δn log(n) + |A|

2


n2 exp


−
δn

|A|2


, (2.15)

where T̂ (Xn
1 ) = T̂PML(Xn

1 ) or T̂ (Xn
1 ) = T̂C (Xn

1 ).

Remark 2.16. Theorem 2.14 is proven without assuming any bound on the height of the hypo-
thetical trees. That is, the result remains valid even if d = −∞. But if the candidate trees have
only a limited number of nodes, possibly depending on n (see, e.g., [25,9]), a straightforward
modification of the proof shows that

P


T̂ (Xn
1 ) ≼ T0


≥ 1 − 2e


δn log(n) + |A|

2


k(n) exp


−
δn

|A|2


,

where k(n) is the maximal number of nodes of a candidate tree. In particular, if the height of the
trees is smaller than a function d(n) (possibly constant) then k(n) = |A|

d(n).

The problem of under-estimation in context tree models is very different, and requires
additional hypotheses on the process {X t : t ∈ Z}. For any w ∈ A∗ with p(w) > 0 define
the coefficient

β(w, r) = max
u∈Ar

max
a∈A

{|p(a|w) − p(a|uw)|}.

The continuity rate of the process {X t : t ∈ Z} is the sequence {βk}k∈N where

βk = max
w∈Ak

sup
r≥1

{β(w, r)}.

Define also the non-nullness coefficient

α0 :=

−
a∈A

inf
w∈T0

{p(a|w)}. (2.17)

Our under-estimation error bounds will rely on the following assumption.

Assumption 1. The process {X t : t ∈ Z} satisfies the following conditions

1. α0 > 0 (weakly non-nullness) and
2. β :=

∑
k∈N βk < +∞ (summable continuity rate).

These are classical hypotheses for processes of infinite memory, which are also referred to as
chains of type A, see for instance [13] and references therein.
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To establish upper bounds for the probability of under-estimation we will consider the
truncated tree T0|K , for any given constant K ∈ N. Note that in the case T0 is a finite tree,
T0|K coincides with T0 for a sufficiently large constant K . The bounds are stated in the following
theorem.

Theorem 2.18. Assume the process {X t : t ∈ Z} satisfies Assumption 1. Let K ∈ N and let d be
such that

min
w≺u∈T0|K

max
r≤d−|w|

{β(w, r)} ≥ ϵ > 0. (2.19)

Then, there exists n0 ∈ N such that for any n ≥ n0 it holds that

P


T0|K ≼ T̂ (Xn
1 )|K


≥ 1 − 3eα0/32e2

|A|
2(|A|β+2α0)|A|

2+K

× exp

−nϵ2


pd
min −

8|A|d f (n)

ϵ2n

2

16(d + 1)

 , (2.20)

where T̂ (Xn
1 ) = T̂PML(Xn

1 ) or T̂ (Xn
1 ) = T̂C (Xn

1 ) and pmin = mina∈A,w∈Ad {p(a|w): p(a|w)

> 0}.

Remark 2.21. It can be seen that for any K ∈ N there is always a value of d such that (2.19)
holds. This hypothesis can be avoided by letting d increase with the sample size n and by
controlling the upper bounds in (2.20). Extensions of Theorem 2.18 can also be obtained by
allowing K to be a function of the sample size n. In this case, the rate at which K increases must
be controlled together with the rate at which ϵ and pmin decrease with the sample size. This leads
to a rather technical condition, see for instance [26].

Finally, the next theorem states the strong consistency of the estimators T̂C (Xn
1 ) and T̂PML

(Xn
1 ) for appropriate threshold parameters and penalizing functions, respectively.

Theorem 2.22. Assume the hypotheses of Theorem 2.18 are met. Then for any threshold param-
eter (δn)n∈N such that−

n∈N
exp


−

δn

|A|2
+ log(δn log(n))


< +∞

we have T̂C (Xn
1 )|K = T0|K eventually almost surely as n → +∞. Similarly, if we choose

f (n) = δn we have T̂PML(Xn
1 )|K = T0|K eventually almost surely as n → +∞.

3. Proofs

3.1. Proof of Proposition 2.13

We must prove that a leaf in T̂PML(Xn
1 ) is always a leaf or an internal node in T̂C (Xn

1 ). By
the characterization of T̂C (Xn

1 ) and T̂PML(Xn
1 ) given by Eqs. (2.8) and (2.12), respectively, this

is equivalent to proving that Xw(Xn
1 ) ≤ Cw(Xn

1 ) for all w ∈ Vn with |w| < d . In fact, assume
that Xw(Xn

1 ) = 1 implies Cw(Xn
1 ) = 1, and take w ∈ T̂PML(Xn

1 ); then, either |w| = d and
w ∈ T̂C (Xn

1 ), or it holds that for all u ≺ w, Xu(Xn
1 ) = 1, which implies by assumption that



2496 A. Garivier, F. Leonardi / Stochastic Processes and their Applications 121 (2011) 2488–2506

Cu(Xn
1 ) = 1. Now, if Cw(Xn

1 ) = 0, then w ∈ T̂C (Xn
1 ); otherwise, w is a proper suffix of a

sequence v ∈ TC (Xn
1 ). In any case, w is a leaf or an internal node of T̂C (Xn

1 ).
Assume there exists w ∈ Vn, |w| < d , such that Xw(Xn

1 ) = 1 and Cw(Xn
1 ) = 0. Note that by

(2.7), Cw(Xn
1 ) = 0 implies Cuw(Xn

1 ) = 0 for all uw ∈ Vn, |uw| ≤ d; hence, w can be chosen
such that Xbw(Xn

1 ) = 0 for any bw ∈ Vn, b ∈ A. In this case we have, by the definitions (2.10)
and (2.11) that

e− f (n)P̂ML,w(Xn
1 ) <

∏
b:bw∈Vn

Vbw(Xn
1 ) (3.1)

=

∏
b:bw∈Vn

e− f (n)P̂ML,bw(Xn
1 ). (3.2)

The equality in the second line of the last expression follows by the fact that Xbw(Xn
1 ) = 0

for any bw ∈ Vn, b ∈ A; therefore we must have Vbw(Xn
1 ) = e− f (n)P̂ML,bw(Xn

1 ) for any
bw ∈ Vn, b ∈ A.

Now, observe that for any a ∈ A, Nn(w, a) =
∑

b:bw∈Vn
Nn(bw, a) and |{b: bw ∈ Vn}| ≥ 2.

If not, Nn(w, a) would be equal to Nn(cw, a) for some c ∈ A and for all a ∈ A, implying that
P̂ML,cw(Xn

1 ) = P̂ML,w(Xn
1 ); hence∏

b:bw∈Vn

Vbw(Xn
1 ) = Vcw(Xn

1 ) = e− f (n)P̂ML,cw(Xn
1 ) = e− f (n)P̂ML,w(Xn

1 )

and thus, by definition, Xw(Xn
1 ) = 0. Using these facts, and taking logarithm on both sides of

Inequality (3.1), we obtain

(|{b: bw ∈ Vn}| − 1) f (n) <
−

b:bw∈Vn

−
a∈A

Nn(bw, a) log
p̂n(a|bw)

p̂n(a|w)

=

−
b:bw∈Vn

Nn(bw)D


p̂n(·|bw); p̂n(·|w)


= ∆n(w).

Therefore, if δn ≤ f (n) we have δn < ∆n(w) which contradicts the fact that Cw(Xn
1 ) = 0. This

concludes the proof of Proposition 2.13.

3.2. Proof of Theorem 2.14

We will prove the result for the case T̂ (Xn
1 ) = T̂C (Xn

1 ). The case T̂ (Xn
1 ) = T̂PML(Xn

1 ) follows
straightforwardly from Proposition 2.13 and equality f (n) = δn .

Let On be the event {T̂C (Xn
1 ) ⋠ T0}. Over-estimation occurs if at least one internal node w

of T̂C (Xn
1 ) has a (non-necessarily proper) suffix s in T0; that is, if there exists a (possibly empty)

sequence u such that w = us. Thus, with a little abuse of notation On can be written as

On =


s∈T0


u∈A∗

{∆n(us) > δn}.

For any sequence w ∈ A∗ we have that p̂n(·|w) are the maximum likelihood estimators of the
transition probabilities p(·|w), therefore we have that

∆n(w) =

−
b∈A

Nn(bw)D


p̂n(·|bw); p̂n(·|w)

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=

−
b∈A

Nn(bw)
−
a∈A


p̂(a|bw) log p̂(a|bw) − p̂(a|bw) log p̂(a|w)


=

−
b∈A

Nn(bw)
−
a∈A

p̂(a|bw) log p̂(a|bw)


−

−
b∈A

−
a∈A

Nn(bw, a) log p̂(a|w)

=

−
b∈A

Nn(bw)
−
a∈A

p̂(a|bw) log p̂(a|bw)


−

−
a∈A

Nn(w, a) log p̂(a|w)

≤

−
b∈A

Nn(bw)
−
a∈A

p̂(a|bw) log p̂(a|bw)


−

−
a∈A

Nn(w, a) log p(a|w)

=

−
b∈A

Nn(bw)
−
a∈A

p̂(a|bw) log p̂(a|bw)


−

−
b∈A

−
a∈A

Nn(bw, a) log p(a|w)

=

−
b∈A

Nn(bw)
−
a∈A


p̂(a|bw) log p̂(a|bw) − p̂(a|bw) log p(a|w)


=

−
b∈A

Nn(bw)D


p̂n(·|bw); p(·|w)

.

Hence, as for all b ∈ A it holds that p(·|w) = p(·|bw) we obtain

P(∆n(w) > δn) ≤ P

−
b∈A

Nn(bw)D


p̂n(·|bw); p(·|bw)


> δn


.

Using Theorem A.7, stated in Appendix A, it follows that

P(On) ≤

−
s∈T0

−
u∈A∗

P (∆n(us) > δn)

≤

−
s∈T0

−
u∈A∗

P

−
b∈A

Nn(bus)D


p̂n(·|bus); p(·|bus)


> δn



≤

−
s∈T0

−
u∈A∗

−
b∈A

P


Nn(bus)D


p̂n(·|bus); p(·|bus)


>
δn

|A|

 Nn(bus) > 0


× P (Nn(bus) > 0)

≤ 2e

δn log n + |A|

2


exp


−
δn

|A|2

−
s∈T0

−
u∈A∗

−
b∈A

P (Nn(bus) > 0)

≤ 2e

δn log n + |A|

2


exp


−
δn

|A|2


E[Cn],

where Cn denotes the number of different contexts of the symbols in Xn
1 . But Cn is always upper

bounded by the number n(n − 1)/2 of (non-necessarily distinct) contexts of Xn
1 , and the result

follows.

3.3. Proof of Theorem 2.18

In this case we will prove the result for the case T̂ (Xn
1 ) = T̂PML(Xn

1 ). The case T̂ (Xn
1 ) =

T̂C (Xn
1 ) follows again from Proposition 2.13 and the assumption that δn = f (n).
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If Un denotes the event {T0|K ⋠ T̂PML(Xn
1 )|K } then

Un ⊂


w≺u∈T0|K

{Xw(Xn
1 ) = 0}.

Let w ≺ u ∈ T0|K . Then we have

P


Xw(Xn
1 ) = 0


= P

 ∏
a∈A:aw∈Vn

Vaw(Xn
1 ) ≤ e− f (n)P̂ML,w(Xn

1 )


. (3.3)

By hypothesis, there exists r ≤ d − |w| and s ∈ Ar such that

max
a∈A

|p(a|w) − p(a|sw)| ≥ ϵ.

If s = (s1 . . . sr ), denote by Ai = A \ {si } and let T be the tree given by

T = ∪
r
i=2 ∪b∈Ai {bsr

i w} ∪ {sw}.

By definition, for any aw ∈ Vn it can be shown recursively that

Vaw(Xn
1 ) = max

T ′∈Tn

∏
v∈T ′

aw

e− f (n)P̂ML,v(Xn
1 )

see for example Lemma 4.4 in [9]. Therefore,

P

 ∏
a∈A:aw∈Vn

Vaw(Xn
1 ) ≤ e− f (n)P̂ML,w(Xn

1 )



≤ P

∏
u∈T

e− f (n)P̂ML,u(Xn
1 ) ≤ e− f (n)P̂ML,w(Xn

1 )


(3.4)

by noticing that∏
a∈A:aw∈Vn

max
T ′∈Tn

∏
v∈T ′

aw

e− f (n)P̂ML,v(Xn
1 ) ≥

∏
a∈A:aw∈Vn

∏
v∈Taw

e− f (n)P̂ML,v(Xn
1 )

≥

∏
u∈T

e− f (n)P̂ML,u(Xn
1 ).

Applying logarithm and using that Nn(w, a) =
∑

u∈T Nn(u, a) for any a ∈ A we can write the
probability in (3.4) by

P

−
u∈T

Nn(u)D( p̂n(·|u); p̂n(·|w)) ≤ (|T | − 1) f (n)


≤ P


Nn(sw)D( p̂n(·|sw); p̂n(·|w)) ≤ (|T | − 1) f (n)


. (3.5)

Define the events As,w
n and Bs,w

n by

As,w
n =


Xn

1 : Nn(sw)D( p̂n(·|sw); p̂n(·|w)) ≤ (|T | − 1) f (n)


Bs,w
n =


Xn

1 : D( p̂n(·|sw); p̂n(·|w)) > ϵ2/8


.
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Then we can bound above the probability in (3.5) by P


As,w
n ∩ Bs,w

n

+ P


(Bs,w

n )c

. To bound

the first term note that by Lemma B.11, if n satisfies

f (n)

n
<

ϵ2 p(sw)

8(|T | − 1)

then, using the bound |T | − 1 ≤ |A|r ≤ |A|d we obtain

P


As,w
n ∩ Bs,w

n


≤ P


Nn(sw) ≤

8(|T | − 1) f (n)

ϵ2



≤ eα0/8e2
|A|

2(|A|β+2α0)|A| exp

−n


p(sw) −
8|A|d f (n)

ϵ2n

2

|sw| + 1

 .

On the other hand, by Lemma B.13 we have

P

(Bs,w

n )c
≤ 2eα0/32e2

|A|
2(|A|β+2α0)(|A| + 1) exp

[
−n

ϵ2 p(sw)2

16(|sw| + 1)

]
.

We conclude the proof of Theorem 2.18 by observing that we only have a finite number of
sequences w ≺ u ∈ T0|K , therefore we obtain

P(Un) ≤ 3eα0/32e2
|A|

2(|A|β+2α0)|A|
2+K exp

−nϵ2


pd
min −

8|A|d f (n)

ϵ2n

2

16(d + 1)

 .

3.4. Proof of Theorem 2.22

The statement of the theorem follows straightforward from Theorems 2.14 and 2.18 and the
Borel–Cantelli Lemma, by noticing that the upper bounds for

P(T̂C (Xn
1 )|K ≠ T0|K ) ≤ P(T̂C (Xn

1 )|K ⋠ T0|K ) + P(T0|K ⋠ T̂C (Xn
1 )|K )

are summable in n. The same reasoning applies to T̂PML(Xn
1 ) when f (n) = δn .

4. Discussion

In this paper we showed a relation between two classical algorithms for context tree selection.
We proved that for a proper set of parameters, the Penalized Maximum Likelihood estimator
always yields a smaller tree than the tree given by the algorithm Context. This relation between
the empirical context trees allows us to derive, in an unified way, non-asymptotic bounds for the
probability of over- and under-estimation of the context tree generating the sample. The tree may
be unbounded, and our results apply to processes that do not necessarily have a finite memory.

Concerning under-estimation, we assume the process satisfies some conditions that implies
exponential inequalities for the empirical probabilities. These inequalities were obtained in [17]
under a stronger non-nullness assumption; namely, that the transition probabilities were lower
bounded by a positive constant. In this paper we show that the results also hold for a larger
class of processes. It is conjectured that similar results cannot be obtained without assuming any
non-nullness nor mixing condition of the process.
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Concerning over-estimation no mixing assumption is necessary for Theorem 2.14 to hold.
This improves on and generalizes the results obtained in [17,22]. Our proof is based on
deviation inequalities obtained for empirical Kullback–Leibler divergence, instead of L p norm;
it appears that this pseudo-metric is more intrinsic for binomial distributions (and partially also
for multinomial distributions), as the binary Kullback–Leibler divergence is the rate function of
a Large Deviations Principle. Deriving similar inequalities is also possible for other distributions
and thus other pseudo-metrics, or by using upper bounds of the Legendre transform of the
distribution, as in [21]. These type of inequalities are interesting on their own and prove useful
in various settings: other applications of similar bounds may be found in [21,14,20].

From the point of view of most applications, over- and under-estimation play a different role.
In fact, data-generating processes can often not be assumed to have finite memory: the whole
dependence structure cannot be recovered from finitely many observations and under-estimation
is unavoidable. All what can be expected from the estimator is to highlight evidence of as much
dependence structure as possible, while maintaining a limited probability of false discovery.

Our results imply the strong consistency of the algorithm Context for processes of infinite
memory, generalizing the convergence in probability of this estimator previously obtained
in [12]. Likewise, the strong consistency for the PML estimator is also derived for a larger class
of penalizing functions than in [22].
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Appendix A. Martingale deviation inequalities

This section contains the statement and derivation of two deviation inequalities that are useful
to prove the results of this paper. As they are interesting on their own, we include them in a
separate section. The ingredients of the proofs are mostly inspired by [24], see also [8].

We briefly recall some notation so as to keep this section self-contained. Let (Xn)n∈Z be a
stationary process whose (possibly infinite) context tree is T0, and let Fn be the σ -field generated
by (X j ) j≤n . For k ∈ N, w ∈ Ak , denote p(b|w) = P


Xk+1 = b|X k

1 = w

. For j ≥ 1, define

ξ j = 1{X j−1
j−k = w} and χ j = 1{X j

j−k = wb},

so that Nn(w) =
∑n

j=1 ξ j and Nn(w, b) =
∑n

j=1 χ j . Denote p̂n(b|w) = Nn(w, b)/Nn(w).
The Kullback–Leibler divergence between Bernoulli variables will be denoted by d: for all
p, q ∈ [0, 1],

d(p; q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
.

Proposition A.1. Let k be a positive integer, let w ∈ Ak such that there exists u ∈ T0 with
w ≽ u, and let b ∈ A. Then for any δ > 0

P

Nn(w)d


p̂n(b|w); p(b|w)


> δ


≤ 2e ⌈δ log(n)⌉ exp(−δ).
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Proof. Denote by p = p(b|w), Nn = Nn(w), Sn = Nn(w, b) and p̂n = Sn/Nn . For every
λ > 0, let

φp(λ) = log (1 − p + p exp (λ)) .

Let also W λ
0 = 1 and for t ≥ 1,

W λ
t = exp(λSt − Nt−1φp(λ)).

First, note that

W λ

t


t≥0 is a martingale relative to (Ft )t≥0 with expectation E[W λ

0 ] = 1. In fact,

E

exp (λ (St+1 − St )) |Ft


= E


exp (λχt+1) |Ft


= exp


ξtφp (λ)


= exp


(Nt − Nt−1) φp (λ)


which can be rewritten as

E

exp


λSt+1 − Ntφp (λ)


|Ft


= exp

λSt − Nt−1φp (λ)


.

To proceed, we make use of the so-called ‘peeling trick’ [23]: we divide the interval {1, . . . , n}

of possible values for Nn into “slices” {tk−1 + 1, . . . , tk} of geometrically increasing size, and
treat the slices independently. We may assume that δ > 1, since otherwise the bound is trivial.
Take η = 1/(δ − 1), let t0 = 0 and for k ∈ N∗, let tk =


(1 + η)k


. Let m be the first integer

such that tm ≥ n, that is m =


log n

log 1+η


. Let Ak = {tk−1 < Nn ≤ tk} ∩


Nnd


p̂n; p


> δ


. We

have:

P

Nnd


p̂n; p


> δ


≤ P


m

k=1

Ak


≤

m−
k=1

P(Ak). (A.2)

We upper bound the probability of Ak ∩ { p̂n > p}, the same arguments can easily be
transposed for left deviations. Let s be the smallest integer such that δ/(s + 1) ≤ d(1; p); if
Nn ≤ s, then Nnd( p̂n, p) ≤ sd( p̂n, p) ≤ sd(1, p) < δ and P(Nnd( p̂n, p) ≥ δ, p̂n > p) = 0.
Thus, P(Ak) = 0 for all k such that tk ≤ s.

Take k such that tk > s, and let t̃k−1 = max{tk−1, s}. Let x ∈]p, 1] be such that d(x; p) =

δ/Nn , and let λ(x) = log(x (1 − p)) − log(p (1 − x)), so that d(x; p) = λ(x)x − φp(λ). Let z
such that z ≥ p and d(z, p) = δ/(1 + η)k . Observe that:

• if Nn > tk−1, then

d(z; p) =
δ

(1 + η)k ≥
δ

(1 + η)Nn
;

• if Nn ≤ tk then, as

d( p̂n; p) >
δ

Nn
>

δ

(1 + η)k = d(z; p),

we have:

p̂n ≥ p and d( p̂n; p) >
δ

Nn
H⇒ p̂n ≥ z.

Hence, on the event {tk−1 < Nn ≤ tk} ∩


p̂n ≥ p


∩


d( p̂n; p) > δ

Nn


it holds that

λ(z) p̂n − φp(λ(z)) ≥ λ(z)z − φp(λ(z)) = d(z; p) ≥
δ

(1 + η)Nn
.
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Putting everything together,
t̃k−1 < Nn ≤ tk


∩


p̂n ≥ p


∩


d( p̂n; p) ≥

δ

Nn


⊂


λ(z) p̂n − φp(λ(z)) ≥

δ

Nn (1 + η)


⊂


λ(z)Sn − Nnφp(λ(z)) ≥

δ

1 + η


⊂


W λ(z)

n > exp


δ

1 + η


.

As

W λ

t


t≥0 is a martingale, E


W λ(z)

n


= E


W λ(z)

0


= 1, and the Markov inequality yields:

P


t̃k−1 < Nn ≤ tk


∩


p̂n ≥ p


∩


Nnd( p̂n, p) ≥ δ


≤ P


W λ(z)
n > exp


δ

1 + η


≤ exp


−

δ

1 + η


. (A.3)

Similarly,

P


t̃k−1 < Nn ≤ tk


∩


p̂n ≤ p


∩


Nnd( p̂n, p) ≥ δ


≤ exp


−
δ

1 + η


,

so that

P


t̃k−1 < Nn ≤ tk


∩


Nnd( p̂n, p) ≥ δ


≤ 2 exp


−
δ

1 + η


.

Finally, by Eq. (A.2),

P


m

k=1


t̃k−1 < Nn ≤ tk


∩


Nnd( p̂n, p) ≥ δ


≤ 2m exp


−
δ

1 + η


.

But as η = 1/(δ − 1), m =


log n

log(1+1/(δ−1))


and as log(1 + 1/(δ − 1)) ≥ 1/δ, we obtain:

P

Nnd( p̂n, p) ≥ δ


≤ 2

 log n

log


1 +
1

δ−1


 exp(−δ + 1) ≤ 2e ⌈δ log(n)⌉ exp(−δ). �

Remark A.4. The bound of Proposition A.1 also holds for P

Nnd( p̂n, p) ≥ δ|Nn > 0


: in

fact, as

1 = E

W λ(z)

n


= E


W λ(z)

n |Nn > 0


P(Nn > 0) + E

W λ(z)

n |Nn = 0


P(Nn = 0)

= E

W λ(z)

n |Nn > 0


P(Nn > 0) + 1 − P(Nn > 0),

it follows that E

W λ(z)

n |Nn > 0


= 1 and starting from Eq. (A.3), the proof can be rewritten

conditionally on {Nn > 0}; this leads to:

P

Nnd( p̂n, p) ≥ δ|Nn > 0


≤ 2e ⌈δ log(n)⌉ exp(−δ).
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However, in general no such result can be proved for P

Nnd( p̂n, p) ≥ δ|Nn > k


for positive

values of k.

To proceed, we need the following lemma:

Lemma A.5. For any probability distributions P and Q on the finite alphabet A,

D(P; Q) ≤

−
x∈A

d (P(x); Q(x)) .

Proof.−
x∈A

d (P(x); Q(x)) − D(P; Q) =

−
x∈A

(1 − P(x)) log
1 − P(x)

1 − Q(x)

= (|X | − 1)
−
x∈A

1 − P(x)

|A| − 1
log


(1 − P(x))/(|A| − 1)

(1 − Q(x))/(|A| − 1)


≥ 0

because the sum in the next-to-last line is the Kullback–Leibler divergence between the proba-
bility distributions R and S defined on A by:

R(x) =
1 − P(x)

|A| − 1
and S(x) =

1 − Q(x)

|A| − 1
. �

Remark A.6. Obviously, this lemma is suboptimal for |A| = 2 by a factor 2. For larger alpha-
bets, it does not appear possible to improve on this bound for all P and Q.

We are now in position to state the deviation result we use in order to upper bound the prob-
ability of over-estimation:

Theorem A.7. Let k be a positive integer and let w ∈ Ak . Then, for any δ > 0

P

Nn(w)D


p̂n (·|w) ; p (·|w)


> δ


≤ 2e (δ log(n) + |A|) exp


−

δ

|A|


.

Proof. By combining Lemma A.5 and Proposition A.1, we get

P

Nn(w)D


p̂n (·|w) ; p (·|w)


> δ


≤ P

−
b∈A

Nnd


p̂n (b|w) ; p (b|w)


> δ



≤

−
b∈A

P
[

Nnd


p̂n (b|w) ; p (b|w)


>
δ

|A|

]
≤ 2|A|e


δ

|A|
log(n)


exp


−

δ

|A|


≤ 2|A|e


δ

|A|
log(n) + 1


exp


−

δ

|A|


= 2e (δ log(n) + |A|) exp


−

δ

|A|


. �



2504 A. Garivier, F. Leonardi / Stochastic Processes and their Applications 121 (2011) 2488–2506

Remark A.8. It follows from Remark A.4 that the following variant of Theorem A.7 holds:

P

Nn(w)D


p̂n (·|w) ; p (·|w)


> δ|Nn(w) > 0


≤ 2e (δ log(n) + |A| − 1) exp


−

δ

|A| − 1


.

Appendix B. Exponential inequalities for weak dependent processes

In this section we state some results providing exponential inequalities for processes satisfying
Assumption 1 and prove two lemmas that are useful in the proof of Theorem 2.18. The first result
is a version of Theorem 3.1 in [17] that we state under weaker conditions, given by Assumption 1.

Proposition B.9. Assume the process {X t : t ∈ Z} satisfies Assumption 1. Then for any w ∈ A∗,
any a ∈ A and any t > 0 the following inequality holds

P(|Nn(w, a) − np(wa)| > t) ≤ eα0/8e2(|A|β+2α0) exp


−t2

|wa|n


.

Proof. Theorem 3.1 in [17] was proven for a process satisfying a stronger non-nullness hypothe-
sis than our Assumption 1, namely that infw∈T0{p(a|w)} > 0 for any a ∈ A. But the proof of the
theorem is based on results obtained in [7] and [11] that also hold for processes satisfying our
weaker assumption. Moreover, the upper bound in Theorem 3.1 in [17] depends on the coefficient

α :=

−
k≥0

(1 − αk),

where for k ≥ 1

αk := inf
u∈Ak

−
a∈A

inf
x−1
−∞

p(a|x−1
−∞u).

But it can be shown that for any k ≥ 1 we have 1 − αk ≤ |A|βk , as noted by [10] in their proof
of Lemma 3. Therefore α ≤ |A|β + α0 and Theorem 3.1 in [17] takes the form of Proposi-
tion B.9. �

As a consequence of this result we have the following lemma, proven in [22, Corollary A.7].

Lemma B.10. Assume the process {X t : t ∈ Z} satisfies Assumption 1. Then for any w ∈ A∗, any
a ∈ A and any t > 0 the following inequality holds

P

| p̂n(a|w) − p(a|w)| > t


≤ eα0/32e2

|A|
2(|A|β+2α0)(|A| + 1) exp


−nt2 p(w)2

|w| + 1


.

Now, we prove Lemmas B.11 and B.13. These two results are useful in the proof of
Theorem 2.18.

Lemma B.11. Assume the process {X t : t ∈ Z} satisfies Assumption 1. Then for any w ∈ A∗ and
any t > 0 such that t < np(w) we have

P(Nn(w) ≤ t) ≤ eα0/8e2
|A|

2(|A|β+2α0)|A| exp


−n


p(w) −

t
n

2
|w| + 1


. (B.12)
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Proof. Using that Nn(w) =
∑

a∈A Nn(w, a), p(w) =
∑

a∈A p(wa) and t −np(w) < 0 we have
that

P(Nn(w) ≤ t) = P

−
a∈A

[Nn(w, a) − np(wa)] ≤ t − np(w)



≤

−
a∈A

P


|Nn(w, a) − np(wa)| ≥
np(w) − t

|A|


.

Using Proposition B.9 we can bound above the right hand side of the last inequality by

eα0/8e2(|A|β+2α0)|A| exp
[
−

[np(w) − t]2

|A|2(|w| + 1)n

]
.

This implies the bound in (B.12). �

Lemma B.13. Assume the process {X t : t ∈ Z} satisfies Assumption 1. Let u, w ∈ A∗ and b ∈ A
such that p(b|u) − p(b|w) > 0. Then, for any t < [p(b|u) − p(b|w)]2/8 we have that

P

D( p̂n(·|u); p̂n(·|w)) ≤ t


≤ 2eα0/32e2

|A|
2(|A|β+2α0)(|A| + 1)

× exp
[
−n

t

2
min


p(w)2

|w| + 1
,

p(u)2

|u| + 1

]
.

Proof. By Pinsker’s inequality (see, e.g., [6, Section A.2] for a proof) we have that

D( p̂n(·|u); p̂n(·|w)) ≥
1
2

−
a∈A

| p̂n(a|u) − p̂n(a|w)|

2

≥
1
2


p̂n(b|u) − p̂n(b|w)

2
. (B.14)

Now, set ν =
1
8 [p(b|u) − p(b|w)]2 and define the events

Cb,w,u
n,ν = {Xn

1 : | p̂n(b|u) − p(b|u)| ≤


ν/2} ∩ {Xn
1 : | p̂n(b|w) − p(b|w)| ≤


ν/2}. (B.15)

Then, if t < ν we have that the event

{Xn
1 : D( p̂n(·|u); p̂n(·|w)) ≤ t} ∩ Cb,w,u

n,ν = ∅.

To see this note that by (B.14), if (B.15) holds then

D( p̂n(·|u); p̂n(·|w)) ≥
1
2


(p(b|u) −


ν/2) − (p(b|w) +


ν/2)

2
= ν > t.

Therefore, using the bounds in Lemma B.10 we obtain for any t < ν that

P

D( p̂n(·|u); p̂n(·|w)) ≤ t


≤ P


| p̂n(b|u) − p(b|u)| ≥


ν/2


+ P


| p̂n(b|w) − p(b|w)| ≥


ν/2


≤ 2eα0/32e2

|A|
2(|A|β+2α0)(|A| + 1) exp

[
−n

ν

2
min


p(w)2

|w| + 1
,

p(u)2

|u| + 1

]
. �
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