777 research outputs found

    Clusterization in the shape isomers of the 56Ni nucleus

    Get PDF
    The interrelation of the quadrupole deformation and clusterization is investigated in the example of the 56Ni nucleus. The shape isomers, including superdeformed and hyperdeformed states, are obtained as stability regions of the quasidynamical U(3) symmetry based on a Nilsson calculation. Their possible binary clusterizations are investigated by considering both the consequences of the Pauli exclusion principle and the energetic preference

    Vegetation history, recent dynamics and future prospects of a Hungarian sandy forest-steppe reserve: forest-grassland relations, tree species composition and size-class distribution

    Get PDF
    Pannonian forest-steppes host a high number of endemic species and contribute to landscape-scale heterogeneity. Alterations in the proportion of forests and grasslands due to changes in land-use practice and climatic parameters can have serious nature conservation consequences. Hypotheses about forest-steppe dynamics have rarely been verified by detailed analyses, especially for the sandy forest-steppes. We integrated historical analysis, aerial photo interpretation and field investigation to determine how vegetation of a sandy forest-steppe has changed, how current dynamical processes operate and how native and exotic tree species regenerate under present conditions. The vegetation of the study area before the onset of major anthropogenic environmental transformations in the Carpathian Basin may have been a mosaic of forested and unforested patches. However, there is strong evidence that after heavy deforestation, the region was almost completely treeless between the 15th and the 19th centuries. Forest cover was able to recover by the 1800s but the lack of forested areas in the region for centuries explains why forest patches are still poor in species. Grasslands, which existed continuously, are more diverse, supporting several rare and endemic species. From 1953 till 2013, 72.45% of the area proved to be stable, but 27.55% showed clear dynamical character, changing either from forest to grassland, or vice versa. Thus, cyclic dynamics can occur in sandy forest-steppes. We found that forest patches of different size, differently exposed edges and grasslands provide different habitats for the tree species. Exotic species were present in large numbers, probably due to the small size of the reserve and the lack of a buffer zone

    The s process in AGB stars as constrained by a large sample of barium stars

    Get PDF
    © ESO 2018. Context. Barium (Ba) stars are dwarf and giant stars enriched in elements heavier than iron produced by the slow neutron-capture process (s process). These stars belong to binary systems in which the primary star evolved through the asymptotic giant branch (AGB) phase. During this phase the primary star produced s-process elements and transferred them onto the secondary, which is now observed as a Ba star. Aims. We compare the largest homogeneous set of Ba giant star observations of the s-process elements Y, Zr, La, Ce, and Nd with AGB nucleosynthesis models to reach a better understanding of the s process in AGB stars. Methods. By considering the light-s (ls: Y and Zr) heavy-s (hs: La, Ce, and Nd) and elements individually, we computed for the first time quantitative error bars for the different hs-element to ls-element abundance ratios, and for each of the sample stars. We compared these ratios to low-mass AGB nucleosynthesis models. We excluded La from our analysis because the strong La lines in some of the sample stars cause an overestimation and unreliable abundance determination, as compared to the other observed hs-Type elements. Results. All the computed hs-Type to ls-Type element ratios show a clear trend of increasing with decreasing metallicity with a small spread (less than a factor of 3). This trend is predicted by low-mass AGB models in which 13C is the main neutron source. The comparison with rotating AGB models indicates the need for the presence of an angular momentum transport mechanism that should not transport chemical species, but significantly reduces the rotational speed of the core in the advanced stellar evolutionary stages. This is an independent confirmation of asteroseismology observations of the slow down of core rotation in giant stars, and of rotational velocities of white dwarfs lower than predicted by models without an extra angular momentum transport mechanism
    corecore