24 research outputs found
The last gasps of VY CMa: Aperture synthesis and adaptive optics imagery
We present new observations of the red supergiant VY CMa at 1.25 micron, 1.65
micron, 2.26 micron, 3.08 micron and 4.8 micron. Two complementary
observational techniques were utilized: non-redundant aperture masking on the
10-m Keck-I telescope yielding images of the innermost regions at unprecedented
resolution, and adaptive optics imaging on the ESO 3.6-m telescope at La Silla
attaining extremely high (~10^5) peak-to-noise dynamic range over a wide field.
For the first time the inner dust shell has been resolved in the near-infrared
to reveal a one-sided extension of circumstellar emission within 0.1" (~15
R_star) of the star. The line-of-sight optical depths of the circumstellar dust
shell at 1.65 micron, 2.26 micron, and 3.08 micron have been estimated to be
1.86 +/- 0.42, 0.85 +/- 0.20, and 0.44 +/- 0.11. These new results allow the
bolometric luminosity of VY~CMa to be estimated independent of the dust shell
geometry, yielding L_star ~ 2x10^5 L_sun. A variety of dust condensations,
including a large scattering plume and a bow-shaped dust feature, were observed
in the faint, extended nebula up to 4" from the central source. While the
origin of the nebulous plume remains uncertain, a geometrical model is
developed assuming the plume is produced by radially-driven dust grains forming
at a rotating flow insertion point with a rotational period between 1200-4200
years, which is perhaps the stellar rotational period or the orbital period of
an unseen companion.Comment: 25 pages total with 1 table and 5 figures. Accepted by Astrophysical
Journal (to appear in February 1999
Mid-IR Observations of Mira Circumstellar Environment
This paper presents results from high-angular resolution mid-IR imaging of
the Mira AB circumbinary environment using the MIRAC3 camera at the NASA
Infrared Telescope Facility (IRTF). We resolved the dusty circumstellar
envelope at 9.8, 11.7 and 18 micron around Mira A (o Ceti), and measured the
size of the extended emission. Strong deviations from spherical symmetry are
detected in the images of Mira AB system, including possible dust clumps in the
direction of the companion (Mira B). These observations suggest that Mira B
plays an active role in shaping the morphology of the circumstellar environment
of Mira A as it evolves toward the Planetary Nebula phase.Comment: 11 pages, 2 PostScript figures, accepted for publication in the
Astrophysical Journal Letter
An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status
MATISSE is the second-generation mid-infrared spectrograph and imager for the
Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric
instrument will allow significant advances by opening new avenues in various
fundamental research fields: studying the planet-forming region of disks around
young stellar objects, understanding the surface structures and mass loss
phenomena affecting evolved stars, and probing the environments of black holes
in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the
spectral domain of current optical interferometers by offering the L and M
bands in addition to the N band. This will open a wide wavelength domain,
ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band)
/ 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared
imaging - closure-phase aperture-synthesis imaging - with up to four Unit
Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE
will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we
present one of the main science objectives, the study of protoplanetary disks,
that has driven the instrument design and motivated several VLTI upgrades
(GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a
description of the signal on the detectors and an evaluation of the expected
performances. We also discuss the current status of the MATISSE instrument,
which is entering its testing phase, and the foreseen schedule for the next two
years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2016, 11 pages, 6 Figure
Science cases for a visible interferometer
High spatial resolution is the key for the understanding various astrophysical phenomena. But even with the future E-ELT, single dish instruments are limited to a spatial resolution of about 4 mas in the visible. For the closest objects within our Galaxy most of the stellar photosphere remains smaller than 1 mas. With the success of long baseline interferometry these limitations were soom overcome. Today low and high resolution interferometric instruments on the VLTI and CHARA offer an immense range of astrophysical studies. Combining more telescopes and moving to visible wavelengths broadens the science cases even more. With the idea of developing strong science cases for a future visible interferometer, we organized a science group around the following topics: pre-main sequence and main sequence stars, fundamental parameters, asteroseismology and classical pulsating stars, evolved stars, massive stars, active galactic nuclei (AGNs) and imaging techniques. A meeting was organized on the 15th and 16th of January, 2015 in Nice with the support of the Action Specific in Haute Resolution Angulaire (ASHRA), the Programme National en Physique Stellaire (PNPS), the Lagrange Laboratory and the Observatoire de la Cote d'Azur, in order to present these cases and to discuss them further for future visible interferometers. This White Paper presents the outcome of the exchanges. This book is dedicated to the memory of our colleague Olivier Chesneau who passed away at the age of 41