16 research outputs found

    Reconstitution of Chromatin by Stepwise Salt Dialysis.

    No full text
    Chromatin, rather than plain DNA, is the natural substrate of the molecular machines that mediate DNA-directed processes in the nucleus. Chromatin can be reconstituted in vitro by using different methodologies. The salt dialysis method yields chromatin that consists of purified histones and DNA. This biochemically pure chromatin is well-suited for a wide range of applications. Here, we describe simple and straightforward protocols for the reconstitution of chromatin by stepwise salt dialysis and the analysis of the chromatin by the micrococcal nuclease (MNase) digestion assay. Chromatin that is reconstituted with this method can be used for efficient homology-directed repair (HDR)-mediated gene edited with the CRISPR-Cas9 system as well as for biochemical studies of chromatin dynamics and function

    A simple and versatile system for the ATP-dependent assembly of chromatin.

    No full text
    Chromatin is the natural form of DNA in the eukaryotic nucleus and is the substrate for diverse biological phenomena. The functional analysis of these processes ideally would be carried out with nucleosomal templates that are assembled with customized core histones, DNA sequences, and chromosomal proteins. Here we report a simple, reliable, and versatile method for the ATP-dependent assembly of evenly spaced nucleosome arrays. This minimal chromatin assembly system comprises the Drosophila nucleoplasmin-like protein (dNLP) histone chaperone, the imitation switch (ISWI) ATP-driven motor protein, core histones, template DNA, and ATP. The dNLP and ISWI components were synthesized in bacteria, and each protein could be purified in a single step by affinity chromatography. We show that the dNLP-ISWI system can be used with different DNA sequences, linear or circular DNA, bulk genomic DNA, recombinant or native Drosophila core histones, native human histones, the linker histone H1, the non-histone chromosomal protein HMGN2, and the core histone variants H3.3 and H2A.V. The dNLP-ISWI system should be accessible to a wide range of researchers and enable the assembly of customized chromatin with specifically desired DNA sequences, core histones, and other chromosomal proteins
    corecore