55,646 research outputs found
The bounds of heavy-tailed return distributions in evolving complex networks
We consider the evolution of scale-free networks according to preferential
attachment schemes and show the conditions for which the exponent
characterizing the degree distribution is bounded by upper and lower values.
Our framework is an agent model, presented in the context of economic networks
of trades, which shows the emergence of critical behavior. Starting from a
brief discussion about the main features of the evolving network of trades, we
show that the logarithmic return distributions have bounded heavy-tails, and
the corresponding bounding exponent values can be derived. Finally, we discuss
these findings in the context of model risk
On the normalization of Killing vectors and energy conservation in two-dimensional gravity
We explicitly show that, in the context of a recently proposed 2D dilaton
gravity theory, energy conservation requires the ``natural'' Killing vector to
have, asymptotically, an unusual normalization. The Hawking temperature
is then calculated according to this prescription.Comment: 7 pages, Latex, no figure
Electron and Phonon Thermal Waves in Semiconductors: an Application to Photothermal Effects
The electron and phonon temperature distribution function are calculated in
semiconductors. We solved the coupled one-dimensional heat-diffussion equations
in the linear approximation in which the physical parameters on the sample are
independent of the temperature. We also consider the heat flux at the surface
of the semiconductor as a boundary condition for each electron and phonon
systems instead of using a fixed temperature. From this, we obtain an
expression for electron and phonon temperature respectively. The
characterization of the thermal waves properties is duscussed and some
practical procedures for this purpose provide us information about the electron
and phonon thermal parameters.Comment: 12 pages, amstex and amssymb macro package (LaTeX2e edition
Epidemic model on a network: analysis and applications to COVID-19
We analyze an epidemic model on a network consisting of
susceptible-infected-recovered equations at the nodes coupled by diffusion
using a graph Laplacian. We introduce an epidemic criterion and examine
different vaccination/containment strategies: we prove that it is most
effective to vaccinate a node of highest degree. The model is also useful to
evaluate deconfinement scenarios and prevent a so-called second wave. The model
has few parameters enabling fitting to the data and the essential ingredient of
importation of infected; these features are particularly important for the
current COVID-19 epidemic
Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules
Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K
are covered by ice mantles. A nonthermal desorption mechanism is invoked to
explain the presence of gas-phase molecules in these environments, such as the
photodesorption induced by irradiation of ice due to secondary ultraviolet
photons. To quantify the effects of ice photoprocessing, an estimate of the
photon absorption in ice mantles is required. In a recent work, we reported the
vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the
solid phase. The aim was to estimate the VUV-absorption cross sections of
nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column
densities of the ice samples deposited at 8 K were measured in situ by infrared
spectroscopy in transmittance. VUV spectra of the ice samples were collected in
the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged
hydrogen flow lamp. We found that, as expected, solid N2 has the lowest
VUV-absorption cross section, which about three orders of magnitude lower than
that of other species such as O2, which is also homonuclear. Methane (CH4) ice
presents a high absorption near Ly-alpha (121.6 nm) and does not absorb below
148 nm. Estimating the ice absorption cross sections is essential for models of
ice photoprocessing and allows estimating the ice photodesorption rates as the
number of photodesorbed molecules per absorbed photon in the ice.Comment: 9 pages, 6 figures, 7 table
- …
