15 research outputs found
MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration
Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015. Since its conception, MIBiG has been regularly updated to expand data coverage and remain up to date with innovations in natural product research. Here, we describe
MIBiG version 4.0, an extensive update to the data repository and the underlying data standard. In a massive community annotation effort, 267 contributors performed 8304 edits, creating 557 new entries and modifying 590 existing entries, resulting in a new total of 3059 curated entries in MIBiG. Particular attention was paid to ensuring high data quality, with automated data validation using a newly developed custom
submission portal prototype, paired with a novel peer-reviewing model. MIBiG 4.0 also takes steps towards a rolling release model and a broaderinvolvement of the scientific community. MIBiG 4.0 is accessible online at https://mibig.secondarymetabolites.org/
Acetosellin Derivative
Natural products from fungi, especially Ascomycota, play a major role in therapy and drug discovery. Fungal strains originating from marine habitats offer a new avenue for finding unusual molecular skeletons. Here, the marine-derived fungus Epicoccum nigrum (strain 749) was found to produce the azaphilonoid compounds acetosellin and 5', 6'-dihydroxyacetosellin. The latter is a new natural product. The biosynthesis of these polyketide-type compounds is intriguing, since two polyketide chains are assembled to the final product. Here we performed C-13 labeling studies on solid cultures to prove this hypothesis for acetosellin biosynthesis
Rational design of a heterotrimeric G protein subunit with artificial inhibitor sensitivity
Transmembrane signals initiated by a range of extracellular stimuli converge on members of the Gq family of heterotrimeric G proteins, which relay these signals in target cells. Gq family G proteins comprise Gq, G11, G14, and G16, which upon activation mediate their cellular effects via inositol lipid– dependent and –independent signaling to control fundamental processes in mammalian physiology. To date, highly specific inhibition of Gq/11/14 signaling can be achieved only with FR900359 (FR) and YM-254890 (YM), two naturally occurring cyclic depsipeptides. To further development of FR or YM mimics for other G subunits, we here set out to rationally design G16 proteins with artificial FR/YM sensitivity by introducing an engineered depsipeptide-binding site. Thereby we permit control of G16 function through ligands that are inactive on the WT protein. Using CRISPR/Cas9-generated Gq/G11-null cells and loss- and gain-of-function mutagenesis along with label-free whole-cell biosensing, we determined the molecular coordinates for FR/YM inhibition of Gq and transplanted these to FR/YM-insensitive G16. Intriguingly, despite having close structural similarity, FR and YM yielded biologically distinct activities: it was more difficult to perturb Gq inhibition by FR and easier to install FR inhibition onto G16 than perturb or install inhibition with YM. A unique hydrophobic network utilized by FR accounted for these unexpected discrepancies. Our results suggest that non-Gq/11/14 proteins should be amenable to inhibition by FR scaffold– based inhibitors, provided that these inhibitors mimic the interaction of FR with G proteins harboring engineered FR-binding sites
Cytochrome P450<sub>Blt</sub> Enables Versatile Peptide Cyclisation to Generate Histidine- and Tyrosine-Containing Crosslinked Tripeptide Building Blocks
We report our investigation of the utility of peptide crosslinking cytochrome P450 enzymes from biarylitide biosynthesis to generate a range of cyclic tripeptides from simple synthons. The crosslinked tripeptides produced by this P450 include both tyrosine-histidine (A-N-B) and tyrosine-tryptophan (A-O-B) crosslinked tripeptides, the latter a rare example of a phenolic crosslink to an indole moiety. Tripeptides are easily isolated following proteolytic removal of the leader peptide and can incorporate a wide range of amino acids in the residue inside the crosslinked tripeptide. Given the utility of peptide crosslinks in important natural products and the synthetic challenge that these can represent, P450 enzymes have the potential to play roles as important tools in the generation of high-value cyclic tripeptides for incorporation in synthesis, which can be yet further diversified using selective chemical techniques through specific handles contained within these tripeptides
Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from <em>Salinispora</em> species
\ua9 2015 Elsevier Ltd. All rights reserved. Genome sequencing has revealed that bacteria contain many more biosynthetic gene clusters than predicted based on the number of secondary metabolites discovered to date. While this biosynthetic reservoir has fostered interest in new tools for natural product discovery, there remains a gap between gene cluster detection and compound discovery. Here we apply molecular networking and the new concept of pattern-based genome mining to 35 Salinispora strains, including 30 for which draft genome sequences were either available or obtained for this study. The results provide a method to simultaneously compare large numbers of complex microbial extracts, which facilitated the identification of media components, known compounds and their derivatives, and new compounds that could be prioritized for structure elucidation. These efforts revealed considerable metabolite diversity and led to several molecular family-gene cluster pairings, of which the quinomycin-type depsipeptide retimycin A was characterized and linked to gene cluster NRPS40 using pattern-based bioinformatic approaches
Heterologous Expression, Biosynthetic Studies, and Ecological Function of the Selective Gq-Signaling Inhibitor FR900359
The cyclic depsipeptide FR900359 (FR), isolated from the tropical plant Ardisia crenata, is a strong and selective inhibitor of Gq proteins, making it an indispensable pharmacological tool to study Gq-related processes, as well as a promising drug candidate. Gq inhibition is a novel mode of action for defense chemicals and crucial for the ecological function of FR, as shown by in vivo experiments in mice, its affinity to insect Gq proteins, and insect toxicity studies. The uncultured endosymbiont of A. crenata was sequenced, revealing the FR nonribosomal peptide synthetase (frs) gene cluster. We here provide a detailed model of FR biosynthesis, supported by in vitro enzymatic and bioinformatic studies, and the novel analogue AC-1, which demonstrates the flexibility of the FR starter condensation domains. Finally, expression of the frs genes in E. coli led to heterologous FR production in a cultivable, bacterial host for the first time
A community resource for paired genomic and metabolomic data mining
Genomics and metabolomics are widely used to explore specialized metabolite diversity. The Paired Omics Data Platform is a community initiative to systematically document links between metabolome and (meta)genome data, aiding identification of natural product biosynthetic origins and metabolite structures
