87 research outputs found

    Demonstration of an annual forage crop integrated with crop and livestock enterprises

    Get PDF
    Using a more diverse cropping system, such as strip intercropping, to produce forages for feeding livestock can create a more sustainable, environmentally friendly farming system. Strip intercropping of corn, soybeans, and oats underseeded with berseem clover was used to demonstrate agronomic and environmental benefits of a more varied cropping system. This system produces oat/ berseem clover soilage (green-chop) that can be utilized to feed beef cattle

    Species Status of Sclerocactus brevispinus, S. wetlandicus, and S. glaucus: Inferences from Morphology, Chloroplast DNA Sequences, and AFLP Markers

    Get PDF
    We examine patterns of variation in 12 continuous morphological traits, chloroplast DNA sequences from 10 intergenic spacer regions (petA-psbJ, psbk-trnS, psbM-trnD, rpob-trnC, trnC-trnD, trnGCU-trnG2S, trnFM-trnUGA, atpF-atpH, trnT-trnD, trnQ-psbk), atpF, and rpl16, and Amplified Fragment Length Polymorphism (AFLP) genetic markers in Sclerocactus glaucus sensu lato (= S. brevispinus, S. glaucus, and S. wetlandicus), a complex that historically has been considered conspecific and afforded protection under the Endangered Species Act. This complex is considered to represent three different species by some authors. We describe the expected patterns of morphological, DNA, and AFLP variation under the conditions that (a) the complex is a single species, and (b) that there are three antonymous species. We show that morphological evidence is consistent with the presence of three significantly different morphological species. Chloroplast DNA sequences provide evidence that the populations of S. glaucus (restricted to Colorado) are a lineage distinct from the populations of S. brevispinus and S. wetlandicus (restricted to Utah). AFLP genetic markers reveal significant genetic divergence among S. brevispinus, S. glaucus, and S. wetlandicus. Equally important, there is greater divergence among species than among populations within the species. The three sources of evidence all support the presence of three species and not a single species. These results indicate that protection of S. glaucus as a threatened species under the Endangered Species Act, as historically prescribed, includes populations of three species, two in Utah (S. brevispinus and S. wetlandicus) and one in Colorado (S. glaucus)

    Nutrient removal by prairie filter strips in agricultural landscapes

    Get PDF
    Nitrogen (N) and phosphorus (P) from agricultural landscapes have been identified as primary sources of excess nutrients in aquatic systems. The main objective of this study was to evaluate the effectiveness of prairie filter strips (PFS) in removing nutrients from cropland runoff in 12 small watersheds in central Iowa. Four treatments with PFS of different spatial coverage and distribution (No-PFS, 10% PFS, 10% PFS with strips, and 20% PFS with strips) were arranged in a balanced incomplete block design across four blocks in 2007. A no-tillage two-year corn (Zea mays L.) –soybean (Glycine max [L.] Merr.) rotation was grown in row-cropped areas beginning in 2007. Runoff was monitored by H flumes, and runoff water samples were collected during the growing seasons to determine concentrations of nitrate-nitrogen (NO3-N), total nitrogen (TN) and total phosphorus (TP) through 2011. Overall, the presence of PFS reduced mean annual NO3-N, TN, and TP concentrations by 35%, 73%, and 82%, respectively, and reduced annual NO3-N, TN, and TP losses by 67%, 84%, and 90%, respectively. However, the amount and distribution of PFS had no significant impact on runoff and nutrient yields. The findings suggest that utilization of PFS at the footslope position of annual row crop systems provides an effective approach to reducing nutrient loss in runoff from small agricultural watersheds

    Effects of native perennial vegetation buffer strips on dissolved organic carbon in surface runoff from an agricultural landscape

    Get PDF
    Dissolved organic carbon (DOC) constitutes a small yet important part of a watershed’s carbon budget because it is mobile and biologically active. Agricultural conservation practices such as native perennial vegetation (NPV) strips will influence carbon cycling of an upland agroecosystem, and could affect how much DOC enters streams in runoff, potentially affecting aquatic ecosystems. In a study conducted in Iowa (USA), four treatments with strips of NPV varying in slope position and proportion of area were randomly assigned among 12 small agricultural watersheds in a balanced incomplete block design. Runoff samples from 2008 to 2010 were analyzed for DOC and correlated with flow data to determine flow weighted DOC concentrations and loads. Data were analyzed for the entire 3 years, annually, seasonally, monthly, by flow event size and for one extreme storm event. Overall we found few differences in DOC concentration with the exception that concentrations were greater in the 10 % NPV at the footslope watersheds than the 20 % NPV in contours watersheds over the 3 years, and the 100 % agricultural treatment had higher DOC concentrations than all NPV treatments during the one extreme event. Because the NPV treatments reduced runoff, DOC export tended to be highest in the 100 % agricultural watersheds over the 3 years and during high flows. We also compared two watersheds that were restored to 100 % NPV and found decreases in DOC concentrations and loads indicating that complete conversion to prairie leads to less watershed DOC export. Regression results also support the contention that increases in the percentage of NPV in the watershed decreases watershed export of DOC. Further analysis indicated that DOC concentrations were diluted as flow event size increased, independent of any treatment effects. It appears groundwater sources become an important component to flow as flow event size increases in these watersheds

    Forage-Based Beef Production Research at the Armstrong Outlying Research Farm

    Get PDF
    Fifty-five yearling crossbred steers and 3C cow-calf pairs were used in a forage-based beef production system demonstration project at the Armstrong Outlying Research Farm. From May 11 to June 13, steers rotationally grazed a 41-acre grass pasture that was divided into eight paddocks. From June 13 to August 24, steers were placed in a drylot and fed berseem clover/oat soilage from a strip-intercropping system. Beginning June 5, 36 cow-calf pairs were allowed to rotationally graze the 41-acre pasture until September 18. Calf weight gains for the 110 days were 1.57 pounds per day, and total production from the pasture was 151 pounds per acre. No cow weight change or condition score change was measured. Total steer production was 29 and 580 pounds per acre or average daily gains were .67 and 2.23 pounds while grazing pasture and being fed in a drylot

    Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor

    Get PDF
    Human lung mast cells (HLMC) express the Ca2+-activated K+ channel KCa3.1, which opens following IgE-dependent activation. This hyperpolarises the cell membrane and potentiates both Ca2+ influx and degranulation. In addition, blockade of KCa3.1 profoundly inhibits HLMC migration to a variety of diverse chemotactic stimuli. KCa3.1 activation is attenuated by the β2adrenoceptor through a Gαs-coupled mechanism independent of cyclic AMP. Adenosine is an important mediator that both attenuates and enhances HLMC mediator release through the Gαs-coupled A2A and A2B adenosine receptors, respectively. We show that at concentrations that inhibit HLMC degranulation (10–5–10–3 M), adenosine closes KCa3.1 both dose-dependently and reversibly. KCa3.1 suppression by adenosine was reversed partially by the selective adenosine A2A receptor antagonist ZM241385 but not by the A2B receptor antagonist MRS1754, and the effects of adenosine were mimicked by the selective A2A receptor agonist CGS21680. Adenosine also opened a depolarising current carried by non-selective cations. As predicted from the role of KCa3.1 in HLMC migration, adenosine abolished HLMC chemotaxis to asthmatic airway smooth muscle-conditioned medium. In summary, the Gαs-coupled adenosine A2A receptor closes KCa3.1, providing a clearly defined mechanism by which adenosine inhibits HLMC migration and degranulation. A2A receptor agonists with channel-modulating function may be useful for the treatment of mast cell-mediated disease

    Orai/CRACM1 and KCa3.1 ion channels interact

    Get PDF
    open access articleBACKGROUND: Orai/CRACM1 ion channels provide the major Ca(2+) influx pathway for FcεRI-dependent human lung mast cell (HLMC) mediator release. The Ca(2+)-activated K(+) channel KCa3.1 modulates Ca(2+) influx and the secretory response through hyperpolarisation of the plasma membrane. We hypothesised that there is a close functional and spatiotemporal interaction between these Ca(2+)- and K(+)-selective channels. RESULTS: Activation of FcεRI-dependent HLMC KCa3.1 currents was dependent on the presence of extracellular Ca(2+), and attenuated in the presence of the selective Orai blocker GSK-7975A. Currents elicited by the KCa3.1 opener 1-EBIO were also attenuated by GSK-7975A. The Orai1 E106Q dominant-negative mutant ablated 1-EBIO and FcεRI-dependent KCa3.1 currents in HLMCs. Orai1 but not Orai2 was shown to co-immunoprecipitate with KCa3.1 when overexpressed in HEK293 cells, and Orai1 and KCa3.1 were seen to co-localise in the HEK293 plasma membrane using confocal microscopy. CONCLUSION: KCa3.1 activation in HLMCs is highly dependent on Ca(2+) influx through Orai1 channels, mediated via a close spatiotemporal interaction between the two channels

    Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society

    Get PDF
    It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances. These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews
    • …
    corecore