9 research outputs found

    Mutations in 3β-hydroxysteroid-δ8, δ7-isomerase paradoxically benefit epidermal permeability barrier homeostasis in mice.

    No full text
    Inherited or acquired blockade of distal steps in the cholesterol synthetic pathway results in ichthyosis, due to reduced cholesterol production and/or the accumulation of toxic metabolic precursors, while inhibition of epidermal cholesterol synthesis compromises epidermal permeability barrier homeostasis. We showed here that 3β-hydroxysteroid-δ8, δ7-isomerase-deficient mice (TD), an analog for CHILD syndrome in humans, exhibited not only lower basal transepidermal water loss rates, but also accelerated permeability barrier recovery despite the lower expression levels of mRNA for epidermal differentiation marker-related proteins and lipid synthetic enzymes. Moreover, TD mice displayed low skin surface pH, paralleled by increased expression levels of mRNA for sodium/hydrogen exchanger 1 (NHE1) and increased antimicrobial peptide expression, compared with wild-type (WT) mice, which may compensate for the decreased differentiation and lipid synthesis. Additionally, in comparison with WT controls, TD mice showed a significant reduction in ear thickness following challenges with either phorbol ester or oxazolone. However, TD mice exhibited growth retardation. Together, these results demonstrate that 3β-hydroxysteroid-δ8, δ7-isomerase deficiency does not compromise epidermal permeability barrier in mice, suggesting that alterations in epidermal function depend on which step of the cholesterol synthetic pathway is interrupted. But whether these findings in mice could be mirrored in humans remains to be determined

    Actin Reorganization Is Abnormal and Cellular ATP Is Decreased in Hailey-Hailey Keratinocytes

    Get PDF
    Actin reorganization and the formation of adherens junctions are necessary for normal cell-to-cell adhesion in keratinocytes. Hailey-Hailey disease (HHD) is blistering skin disease, resulting from mutations in the Ca2+ ATPase ATP2C1, which controls Ca2+ concentrations in the cytoplasm and Golgi of human keratinocytes. Because actin reorganization is among the first responses to raised cytoplasmic Ca2+, we examined Ca2+-induced actin reorganization in normal and HHD keratinocytes. Even though HHD keratinocytes display raised baseline cytoplasmic Ca2+, we found that actin reorganization in response to Ca2+ was impaired in HHD keratinocytes. Defects in actin reorganization were linked to a marked decrease in cellular ATP in HHD keratinocytes, which persists, in vivo, in HHD epidermis. Defective actin reorganization was reproduced in normal keratinocytes in which the intra-cellular ATP concentration had been lowered pharmacologically. ATP concentrations in undifferentiated keratinocytes markedly declined after extracellular Ca2+ was increased, but then recovered to a new baseline that was approximately 150% of the previous baseline. In contrast, ATP concentrations in HHD keratinocytes did not change in response to increased extracellular Ca2+. This report provides new insights into how the ATP2C1-controlled ATP metabolism mediates Ca2+-induced cell-to-cell adhesion in normal keratinocytes. In addition, these findings implicate inadequate ATP stores as an additional cause in the pathogenesis of HHD and suggest novel therapeutic options

    Topical hesperidin enhances epidermal function in an aged murine model.

    Get PDF
    the epidermis is thinner with reduced epidermal proliferation, abnormal differentiation, impaired lipid synthesis and elevated skin surface pH. These alterations have profound consequences for barrier function, skin cohesion, antimicrobial defense, inflammatory threshold, and cutaneous wound healing (Choi et al., 2007; Mauro et al., 1998; Ghadially et al., 1995; Rodriguez-Martin et al., 2011). These abnormalities have been linked, in part, to reduced epidermal IL-1α expression (Ye et al., 2002), reduced epidermal expression of CD44 and its ligand, hyaluronic acid (Bourguignon et al., 2013), and reduced epidermal lipid synthesis. Among these many changes, much attention has been paid to the epidermal permeability barrier, because of its dominant role in regulating cutaneous homeostasis. Studies have demonstrated that epidermal permeability barrier regulates epidermal proliferation, differentiation, lipid production, as well as innate immunity. Therefore, strategies that enhance epidermal proliferation, differentiation and/or lipid production, while also reducing stratum corneum (SC) pH could prove useful for preventing and/or treating the functional abnormalities, including permeability barrier homeostasis in aged skin. Our previous studie

    Regulation of ABCG1 expression in human keratinocytes and murine epidermis[S]

    No full text
    ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3–6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion
    corecore