1,152 research outputs found

    Sphagnum Taxa and Their Distribution in Iowa

    Get PDF
    Sphagnum was known previously from eight counties in Iowa based on documented specimens. Undocumented collections were also reported from Buchanan, Cedar, and Johnson Counties. We have added four new species (S. compactum, S. fimbriatum, S. squarrosum, and S. warnstorfii) and three new varieties (S. subsecundum var. subsecundum, S. recurvum var. amblyphyllum, and S. recurvum var. recurvum) to the state flora, and four new stations in three counties (Black Hawk, Iowa, and Marion) where sphagnum was previously unknown. Sphagnum is presently represented in Iowa by documented collections of 13 taxa from 13 stations in 9 counties, mostly in the eastern third of the state

    Simultaneous effects on parvalbumin-positive interneuron and dopaminergic system development in a transgenic rat model for sporadic schizophrenia

    Get PDF
    To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum. Parvalbumin-positive interneuron occurrence in the somatosensory cortex was shifted from layers II/III to V/VI, and the number of calbindin-positive interneurons was slightly decreased. Reduced corpus callosum thickness confirmed trend-level observations from in vivo MRI and voxel-wise tensor based morphometry. These neuroanatomical changes help explain functional phenotypes of this animal model, some of which resemble changes observed in human schizophrenia post mortem brain tissues. Our findings also demonstrate how a single molecular factor, DISC1 overexpression or misassembly, can account for a variety of seemingly unrelated morphological phenotypes and thus provides a possible unifying explanation for similar findings observed in sporadic schizophrenia patients. Our anatomical investigation of a defined model for sporadic mental illness enables a clearer definition of neuroanatomical changes associated with subsets of human sporadic schizophrenia

    Two-component radiation model of the sonoluminescing bubble

    Full text link
    Based on the experimental data from Weninger, Putterman & Barber, Phys. Rev. (E), 54, R2205 (1996), we offer an alternative interpretation of their experimetal results. A model of sonoluminescing bubble which proposes that the electromagnetic radiation originates from two sources: the isotropic black body or bramsstrahlung emitting core and dipole radiation-emitting shell of accelerated electrons driven by the liquid-bubble interface is outlined.Comment: 5 pages Revtex, submitted to Phys. Rev.

    The Heun equation and the Calogero-Moser-Sutherland system V: generalized Darboux transformations

    Full text link
    We obtain isomonodromic transformations for Heun's equation by generalizing Darboux transformation, and we find pairs and triplets of Heun's equation which have the same monodromy structure. By composing generalized Darboux transformations, we establish a new construction of the commuting operator which ensures finite-gap property. As an application, we prove conjectures in part III.Comment: 24 page

    Periodically kicked turbulence

    Get PDF
    Periodically kicked turbulence is theoretically analyzed within a mean field theory. For large enough kicking strength A and kicking frequency f the Reynolds number grows exponentially and then runs into some saturation. The saturation level can be calculated analytically; different regimes can be observed. For large enough Re we find the saturation level to be proportional to A*f, but intermittency can modify this scaling law. We suggest an experimental realization of periodically kicked turbulence to study the different regimes we theoretically predict and thus to better understand the effect of forcing on fully developed turbulence.Comment: 4 pages, 3 figures. Phys. Rev. E., in pres

    Dressing chain for the acoustic spectral problem

    Full text link
    The iterations are studied of the Darboux transformation for the generalized Schroedinger operator. The applications to the Dym and Camassa-Holm equations are considered.Comment: 16 pages, 6 eps figure

    Investigation of transition frequencies of two acoustically coupled bubbles using a direct numerical simulation technique

    Full text link
    The theoretical results regarding the ``transition frequencies'' of two acoustically interacting bubbles have been verified numerically. The theory provided by Ida [Phys. Lett. A 297 (2002) 210] predicted the existence of three transition frequencies per bubble, each of which has the phase difference of π/2\pi /2 between a bubble's pulsation and the external sound field, while previous theories predicted only two natural frequencies which cause such phase shifts. Namely, two of the three transition frequencies correspond to the natural frequencies, while the remaining does not. In a subsequent paper [M. Ida, Phys. Rev. E 67 (2003) 056617], it was shown theoretically that transition frequencies other than the natural frequencies may cause the sign reversal of the secondary Bjerknes force acting between pulsating bubbles. In the present study, we employ a direct numerical simulation technique that uses the compressible Navier-Stokes equations with a surface-tension term as the governing equations to investigate the transition frequencies of two coupled bubbles by observing their pulsation amplitudes and directions of translational motion, both of which change as the driving frequency changes. The numerical results reproduce the recent theoretical predictions, validating the existence of the transition frequencies not corresponding to the natural frequency.Comment: 18 pages, 8 figures, in pres

    Bubble Shape Oscillations and the Onset of Sonoluminescence

    Get PDF
    An air bubble trapped in water by an oscillating acoustic field undergoes either radial or nonspherical pulsations depending on the strength of the forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor instability and parametric instability) cause deviations from sphericity. Distinguishing these mechanisms allows explanation of many features of recent experiments on sonoluminescence, and suggests methods for finding sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page
    corecore