79 research outputs found

    A Physiology-Based Pharmacokinetic Framework to Support Drug Development and Dose Precision During Therapeutic Hypothermia in Neonates

    Get PDF
    Therapeutic hypothermia (TH) is standard treatment for neonates (≥36 weeks) with perinatal asphyxia (PA) and hypoxic–ischemic encephalopathy. TH reduces mortality and neurodevelopmental disability due to reduced metabolic rate and decreased neuronal apoptosis. Since both hypothermia and PA influence physiology, they are expected to alter pharmacokinetics (PK). Tools for personalized dosing in this setting are lacking. A neonatal hypothermia physiology-based PK (PBPK) framework would enable precision dosing in the clinic. In this literature review, the stepwise approach, benefits and challenges to develop such a PBPK framework are covered. It hereby contributes to explore the impact of non-maturational PK covariates. First, the current evidence as well as knowledge gaps on the impact of PA and TH on drug absorption, distribution, metabolism and excretion in neonates is summarized. While reduced renal drug elimination is well-documented in neonates with PA undergoing hypothermia, knowledge of the impact on drug metabolism is limited. Second, a multidisciplinary approach to develop a neonatal hypothermia PBPK framework is presented. Insights on the effect of hypothermia on hepatic drug elimination can partly be generated from in vitro (human/animal) profiling of hepatic drug metabolizing enzymes and transporters. Also, endogenous biomarkers may be evaluated as surrogate for metabolic activity. To distinguish the impact of PA versus hypothermia on drug metabolism, in vivo neonatal animal data are needed. The conventional pig is a well-established model for PA and the neonatal Göttingen minipig should be further explored for PA under hypothermia conditions, as it is the most commonly used pig strain in nonclinical drug development. Finally, a strategy is proposed for establishing and fine-tuning compound-specific PBPK models for this application. Besides improvement of clinical exposure predictions of drugs used during hypothermia, the developed PBPK models can be applied in drug development. Add-on pharmacotherapies to further improve outcome in neonates undergoing hypothermia are under investigation, all in need for dosing guidance. Furthermore, the hypothermia PBPK framework can be used to develop temperaturedriven PBPK models for other populations or indications. The applicability of the proposed workflow and the challenges in the development of the PBPK framework are illustrated for midazolam as model drug

    Osteochondritis Dissecans of the Knee Associated With Mechanical Overload

    Get PDF
    Background: Osteochondritis dissecans (OCD) of the knee is a rare but potentially incapacitating disorder in which subchondral bone detaches, leading to an osteochondral fragment that can become unstable and progress into a loose body. The exact cause is unknown, although several biological and mechanical factors have been described. Purpose: To provide insight into epidemiological data of a large cohort of patients affected by OCD of the knee and to identify potential factors contributing to the cause of this disorder. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 236 patients (259 knees) affected by OCD were included in our Knee Registry (2005-2022) and retrospectively analyzed. Patient characteristics were extracted from the medical records. Location and International Cartilage Regeneration & Joint Preservation Society grade (1-4) of OCD were assessed using magnetic resonance imaging. If available, a full-leg standing radiograph was used to assess alignment. Additionally, a statistical scoring system for instability risk was created. Results: A total of 263 OCD lesions were identified in 259 knees, 66.2% on the medial femoral condyle (MFC), 26.6% on the lateral femoral condyle (LFC), 3.8% on the trochlea, 2.7% on the patella, and 0.8% on the lateral tibia plateau. Male patients made up 57.6% of the sample, which had a mean age of 21.8 years. A very high percentage of patients (77.1%; n = 182) practiced sports, of whom 67.6% (n = 123) were engaged in high-impact sports. The location of the OCD lesions and the leg alignment (n = 110) were significantly correlated: MFC lesions were associated with more varus than valgus alignment (47.5% vs 11.3%) and patients with LFC lesions had more valgus than varus alignment (46.7% vs 20.0%; P =.002). Based on age, smoking, sports activity, and preceding trauma, a multivariable scoring system (0-11 points) was created. An increased risk of lesion instability was associated with an increased score: 29.0% at 0 points and 97.0% at 11 points. Conclusion: This study provides detailed epidemiological data for 236 patients affected by OCD of the knee. Older age, smoking, inactivity, and preceding trauma were predictive for instability of OCD lesions. There was an association between OCD of the MFC and varus malalignment and between OCD of the LFC and valgus malalignment. This finding, in combination with the high percentage of patients practicing high-impact sports, suggests an important role for mechanical overload in the pathogenesis of OCD

    The neonatal and juvenile pig in pediatric drug discovery and development

    Get PDF
    Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored

    Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo

    Get PDF
    Pancreatic cancer is highly resistant to the currently available chemotherapeutic agents. Less than 5% of patients diagnosed with this disease could survive beyond 5 years. Thus, there is an urgent need for the development of novel, efficacious drugs that can treat pancreatic cancer. Herein we report the identification of artesunate (ART), a derivative of artemisinin, as a potent and selective antitumor agent against human pancreatic cancer cells in vitro and in vivo. ART exhibits selective cytotoxic activity against Panc-1, BxPC-3 and CFPAC-1 pancreatic cancer cells with IC50 values that are 2.3- to 24-fold less than that of the normal human hepatic cells (HL-7702). The pan caspase inhibitor zVAD-fmk did not inhibit the cytotoxic activity of ART. Electron microscopy of ART-treated cells revealed severe cytoplasmic swelling and vacuolization, swollen and internally disorganized mitochondria, dilation (but not fragmentation) of the nuclei without chromatin condensation, and cell lysis, yielding a morphotype that is typical of oncosis. The ART-treated cells exhibited a loss of mitochondrial membrane potential (ΔΨm) and ART-induced cell death was inhibited in the presence of the reactive oxygen species (ROS) scavenger N-acetyl-cysteine (NAC). Importantly, ART produced a dose-dependent tumor regression in an in vivo pancreatic cancer xenografts model. The in vivo antitumor activity of ART was similar to that of gemcitabine. Taken together, our study suggests that ART exhibits antitumor activity against human pancreatic cancer via a novel form of oncosis-like cell death, and that ART should be considered a potential therapeutic candidate for treating pancreatic cancer

    Kupffer Cells Hasten Resolution of Liver Immunopathology in Mouse Models of Viral Hepatitis

    Get PDF
    Kupffer cells (KCs) are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV)-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1) protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology

    Abortive Autophagy Induces Endoplasmic Reticulum Stress and Cell Death in Cancer Cells

    Get PDF
    Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI) is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised

    Induction of selective cytotoxicity and apoptosis in human T4-lymphoblastoid cell line (CEMss) by boesenbergin a isolated from boesenbergia rotunda rhizomes involves mitochondrial pathway, activation of caspase 3 and G2/M phase cell cycle arrest

    Get PDF
    Background Boesenbergia rotunda (Roxb.) Schlecht (family zingiberaceae) is a rhizomatous herb that is distributed from north-eastern India to south-east Asia, especially in Indonesia, Thailand and Malaysia. Previous research has shown that the crude extract of this plant has cytotoxic properties. The current study examines the cytotoxic properties of boesenbergin A isolated from Boesenbergia rotunda. Methods MTT assay was used to check the cytotoxicity of boesenbergin A. The morphological assessment of apoptosis was monitored using normal and fluorescence microscopy. The early and late phase of apoptosis was investigated using annexin V and DNA laddering assays, respectively. The mitochondrial membrane potential (MMP) was assessed by fluorescence microscopy. Human apoptosis proteome profiler assays were performed to investigate the mechanism of cell death. In addition, the protein levels of Bax, Bcl2 and HSP 70 were also analyzed using western blot. Assays of caspase =-3/7, -8 and =-9 were carried out in order to test for induction during treatment. Lastly, cell cycle progression was analyzed using flow cytometry. Results Boesenbergin A was found to have the highest toxicity towards CEMss cancer cells (IC50 = 8 μg/ml). The morphology of CEMss cells after treatment showed evidence of apoptosis that included blebbing and chromatin condensation. The annexin V assay revealed that early apoptosis is induced after treatment. The DNA laddering assay confirmed that DNA fragmentation had occurred during late apoptosis. The cell cycle analysis indicated that boesenbergin A was able to induce G2/M phase arrest in CEMss cells. The activity of caspases -3/7, -8 and -9 was increased after treatment which indicates both intrinsic and extrinsic pathways are induced during apoptosis. The involvement of mitochondria was established by increased mitochondrial membrane potential and up and down regulation of Bcl2 and Bax proteins as well as HSP70. Conclusion In conclusion, the results demonstrated that boesenbergin A induced apoptosis of CEMss cells through Bcl2/Bax signaling pathways with the involvement of caspases and G2/M phase cell cycle arrest. The current findings warrant further research on boesenbergin A as a novel chemotherapeutic agent for leukemia intervention including studies in animal models
    corecore