15 research outputs found

    Validation and clinical application of a multiplex high performance liquid chromatography - tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections.

    Get PDF
    Unpredictable pharmacokinetics of antibiotics in patients with life-threatening bacterial infections is associated with drug under- or overdosing. Therapeutic drug monitoring (TDM) may guide dosing adjustment aimed at maximizing antibacterial efficacy and minimizing toxicity. Rapid and accurate analytical methods are key for real-time TDM. Our objective was to develop a robust high-performance liquid chromatography-tandem mass spectrometry method (HPLC-MS/MS) for multiplex quantification of plasma concentrations of 12 antibiotics: imipenem/cilastatin, meropenem, ertapenem, cefepime, ceftazidime, ceftriaxone, piperacillin/tazobactam, amoxicillin, flucloxacillin, rifampicin, daptomycin. A single extraction procedure consisting in methanol plasma protein precipitation and H <sub>2</sub> O dilution was used for all analytes. After chromatographic separation on an Acquity UPLC HSS-T3 2.1 × 50 mm, 1.8 µm (Waters®) column, quantification was performed by electro-spray ionisation-triple quadrupole mass spectrometry with selected reaction monitoring detection. Antibiotics were divided in two pools of calibration according to the frequency of analyses requests in the hospital routine antibiotic TDM program. Stable isotopically-labelled analogues were used as internal standards. A single analytical run lasted less than 9 min. The method was validated based on FDA recommendations, including assessment of extraction yield (96-113.8%), matrix effects, and analytical recovery (86.3-99.6%). The method was sensitive (lower limits of quantification 0.02-0.5 µg/mL), accurate (intra/inter-assay bias -11.3 to +12.7%) and precise (intra/inter-assay CVs 2.1-11.5%) over the clinically relevant plasma concentration ranges (upper limits of quantification 20-160 µg/mL). The application of the TDM assay was illustrated with clinical cases that highlight the impact on patients' management of an analytical assay providing information with short turn-around time on antibiotic plasma concentration. This simple, robust high-throughput multiplex HPLC-MS/MS assay for simultaneous quantification of plasma concentrations of 12 daily used antibiotics is optimally suited for clinically efficient real-time TDM

    An ultra performance liquid chromatography-tandem MS assay for tamoxifen metabolites profiling in plasma: first evidence of 4'-hydroxylated metabolites in breast cancer patients.

    No full text
    There is increasing evidence that the clinical efficacy of tamoxifen, the first and most widely used targeted therapy for estrogen-sensitive breast cancer, depends on the formation of the active metabolites 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen). Large inter-individual variability in endoxifen plasma concentrations has been observed and related both to genetic and environmental (i.e. drug-induced) factors altering CYP450s metabolizing enzymes activity. In this context, we have developed an ultra performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) requiring 100 μL of plasma for the quantification of tamoxifen and three of its major metabolites in breast cancer patients. Plasma is purified by a combination of protein precipitation, evaporation at room temperature under nitrogen, and reconstitution in methanol/20 mM ammonium formate 1:1 (v/v), adjusted to pH 2.9 with formic acid. Reverse-phase chromatographic separation of tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen is performed within 13 min using elution with a gradient of 10 mM ammonium formate and acetonitrile, both containing 0.1% formic acid. Analytes quantification, using matrix-matched calibration samples spiked with their respective deuterated internal standards, is performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of relative matrix effects variability, as well as tamoxifen and metabolites short-term stability in plasma and whole blood. The method is precise (inter-day CV%: 2.5-7.8%), accurate (-1.4 to +5.8%) and sensitive (lower limits of quantification comprised between 0.4 and 2.0 ng/mL). Application of this method to patients' samples has made possible the identification of two further metabolites, 4'-hydroxy-tamoxifen and 4'-hydroxy-N-desmethyl-tamoxifen, described for the first time in breast cancer patients. This UPLC-MS/MS assay is currently applied for monitoring plasma levels of tamoxifen and its metabolites in breast cancer patients within the frame of a clinical trial aiming to assess the impact of dose increase on tamoxifen and endoxifen exposure

    Imatinib Uptake into Cells is Not Mediated by Organic Cation Transporters OCT1, OCT2, or OCT3, But is Influenced by Extracellular pH.

    No full text
    Cancer cells undergo genetic and environmental changes that can alter cellular disposition of drugs, notably by alterations of transmembrane drug transporters expression. Whether the influx organic cation transporter 1 (OCT1) encoded by the gene SLC221A1 is implicated in the cellular uptake of imatinib is still controversial. Besides, imatinib ionization state may be modulated by the hypoxic acidic surrounding extracellular microenvironment. To determine the functional contribution of OCTs and extracellular pH on imatinib cellular disposition. We measured imatinib uptake in two different models of selective OCTs drug transporter expression (transfected Xenopus laevis oocytes and OCT-expressing HEK293 human cells), incubated at pH 7.4 and 6, using specific mass spectrometry analysis. Imatinib cellular uptake occurred independently of OCT1- OCT2- or OCT3-mediated drug transport at pH 7.4. Uptake of the OCTs substrate tetraethylammonium in oocytes remained intact at pH 6, while the accumulation of imatinib in oocytes was 10-fold lower than at pH 7.4, irrespectively of OCTs expressions. In OCT1- and OCT2-HEK cells at pH 6, imatinib accumulation was reduced by 2- 3-fold regardless of OCTs expressions. Since 99.5% of imatinib at pH6 is under the cationic form, the reduced cellular accumulation of imatinib at such pH may be explained by the lower amount of uncharged imatinib remaining for passive diffusion across cellular membrane. Imatinib is not a substrate of OCTs 1-3 while the environmental pH modulates cellular disposition of imatinib. The observation that a slightly acidic extracellular pH influences imatinib cellular accumulation is important, considering the low extracellular pH reported in the hematopoietic leukemia/ cancer cell microenvironment

    A LC-tandem MS assay for the simultaneous measurement of new antiretroviral agents: Raltegravir, maraviroc, darunavir, and etravirine

    Full text link
    Raltegravir (RAL), maraviroc (MVC), darunavir (DRV), and etravirine (ETV) are new antiretroviral agents with significant potential for drug interactions. This work describes a sensitive and accurate liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of plasma drug levels. Single-step extraction of RAL, MVC, DRV, ETV and RTV from plasma (100 microl) is performed by protein precipitation using 600 microl of acetonitrile, after the addition of 100 microl darunavir-d(9) (DRV-d(9)) at 1000 ng/ml in MeOH/H(2)O 50/50 as internal standard (I.S.). The mixture is vortexed, sonicated for 10 min, vortex-mixed again and centrifuged. An aliquot of supernatant (150 microl) is diluted 1:1 with a mixture of 20 mM ammonium acetate/MeOH 40/60 and 10 microl is injected onto a 2.1 x 50 mm Waters Atlantis-dC18 3 microm analytical column. Chromatographic separations are performed using a gradient program with 2 mM ammonium acetate containing 0.1% formic acid and acetonitrile with 0.1% formic acid. Analytes quantification is performed by electrospray ionisation-triple quadrupole mass spectrometry using the selected reaction monitoring detection in the positive mode. The method has been validated over the clinically relevant concentrations ranging from 12.5 to 5000 ng/ml, 2.5 to 1000 ng/ml, 25 to 10,000 ng/ml, 10 to 4000 ng/ml, and 5 to 2000 ng/ml for RAL, MRV, DRV, ETV and RTV, respectively. The extraction recovery for all antiretroviral drugs is always above 91%. The method is precise, with mean inter-day CV% within 5.1-9.8%, and accurate (range of inter-day deviation from nominal values -3.3 to +5.1%). In addition our method enables the simultaneous assessment of raltegravir-glucuronide. This is the first analytical method allowing the simultaneous assay of antiretroviral agents targeted to four different steps of HIV replication. The proposed method is suitable for the Therapeutic Drug Monitoring Service of these new regimen combinations administered as salvage therapy to patients having experienced treatment failure, and for whom exposure, tolerance and adherence assessments are critical

    Development and validation of a multiplex UHPLC-MS/MS method for the determination of the investigational antibiotic against multi-resistant tuberculosis macozinone (PBTZ169) and five active metabolites in human plasma.

    Get PDF
    The emergence of Mycobacterium tuberculosis strains resistant to current first-line antibiotic regimens constitutes a major global health threat. New treatments against multidrug-resistant tuberculosis (MDR-TB) are thus eagerly needed in particular in countries with a high MDR-TB prevalence. In this context, macozinone (PBTZ169), a promising drug candidate with an unique mode of action and highly potent in vitro tuberculocidal properties against MDR Mycobacterium strains, has now reached the clinical phase and has been notably tested in healthy male volunteers in Switzerland. To that endeavor, a multiplex UHPLC-MS/MS method has been developed for the sensitive and accurate human plasma levels determination of PBTZ169 along with five metabolites retaining in vitro anti-TB activity. Plasma protein precipitation with methanol was carried out as a simplified sample clean-up procedure followed by direct injection of the undiluted supernatant for the bioanalysis of the six analytes within 5 min, using 1.8 μm reversed-phase chromatography coupled to triple quadrupole mass spectrometry employing electrospray ionization in the positive mode. Stable isotopically-labelled PBTZ169 was used as internal standard (ISTD), while metabolites could be reliably quantified using two unlabeled chemical analogues selected as ISTD from a large in-house analogous compounds library. The overall methodology was fully validated according to current recommendations (FDA, EMEA) for bioanalytical methods, which include selectivity, carryover, qualitative and quantitative matrix effect, extraction recovery, process efficiency, trueness, precision, accuracy profiles, method and instrument detection limits, integrity to dilution, anticoagulant comparison and short- and long-term stabilities. Stability studies on the reduced metabolite H2-PBTZ169 have shown no significant impact on the actual PBTZ169 concentrations determined with the proposed assay. This simplified, rapid, sensitive and robust methodology has been applied to the bioanalysis of human plasma samples collected within the frame of a phase I clinical study in healthy volunteers receiving PBTZ169

    A battery of tandem mass spectrometry assays with stable isotope-dilution for the quantification of 15 anti-tuberculosis drugs and two metabolites in patients with susceptible-, multidrug-resistant- and extensively drug-resistant tuberculosis.

    No full text
    Anti-tuberculosis (antiTB) drugs are characterized by an important inter-interindividual pharmacokinetic variability poorly predictable from individual patients' characteristics. Therapeutic drug monitoring (TDM) may therefore be beneficial for patients with Mycobacterium tuberculosis infection, especially for the management of multidrug/extensively drug resistant- (MDR/XDR)-TB. Our objective was to develop robust HPLC-MS/MS methods for plasma quantification of 15 antiTB drugs and 2 metabolites, namely rifampicin, isoniazid plus N-acetyl-isoniazid, pyrazinamide, ethambutol (the conventional quadritherapy for susceptible TB) as well as combination of agents against MDR/XDR-TB: bedaquiline, clofazimine, delamanid and its metabolite M1, levofloxacin, linezolid, moxifloxacin, pretomanid, rifabutin, rifapentine, sutezolid, and cycloserine. Plasma protein precipitation was used for all analytes except cycloserine, which was analyzed separately after derivatization with benzoyl chloride. AntiTB quadritherapy drugs (Pool1) were separated by Hydrophilic Interaction Liquid Chromatography (column Xbridge BEH Amide, 2.1 × 150 mm, 2.5 μm, Waters®) while MDR/XDR-TB agents (Pool 2) and cycloserine (as benzoyl derivative) were analyzed by reverse phase chromatography on a column XSelect HSS T3, 2.1 × 75 mm, 3.5 µm (Waters®). All runs last <7 min. Quantification was performed by selected reaction monitoring electrospray tandem mass spectrometry, using stable isotopically labelled internal standards. The method covers the clinically relevant plasma levels and was extensively validated based on FDA recommendations, with intra- and inter-assay precision (CV) < 15% over the validated ranges. Application of the method is illustrated by examples of TDM for two patients treated for drug-susceptible- and MDR-TB. Such convenient extraction methods and the use of stable isotope-labelled drugs as internal standards provide an accurate and precise quantification of plasma concentrations of all major clinically-used antiTB drugs regimens and is optimally suited for clinically efficient TDM against tuberculosis

    Cell disposition of raltegravir and newer antiretrovirals in HIV-infected patients: high inter-individual variability in raltegravir cellular penetration.

    Get PDF
    Objectives The site of pharmacological activity of raltegravir is intracellular. Our aim was to determine the extent of raltegravir cellular penetration and whether raltegravir total plasma concentration (C(tot)) predicts cellular concentration (C(cell)). Methods Open-label, prospective, pharmacokinetic study on HIV-infected patients on a stable raltegravir-containing regimen. Plasma and peripheral blood mononuclear cells were simultaneously collected during a 12 h dosing interval after drug intake. C(tot) and C(cell) of raltegravir, darunavir, etravirine, maraviroc and ritonavir were measured by liquid chromatography coupled to tandem mass spectrometry after protein precipitation. Longitudinal mixed effects analysis was applied to the C(cell)/C(tot) ratio. Results Ten HIV-infected patients were included. The geometric mean (GM) raltegravir total plasma maximum concentration (C(max)), minimum concentration (C(min)) and area under the time-concentration curve from 0-12 h (AUC(0-12)) were 1068 ng/mL, 51.1 ng/mL and 4171 ng·h/mL, respectively. GM raltegravir cellular C(max), C(min) and AUC(0-12) were 27.5 ng/mL, 2.9 ng/mL and 165 ng·h/mL, respectively. Raltegravir C(cell) corresponded to 5.3% of C(tot) measured simultaneously. Both concentrations fluctuate in parallel, with C(cell)/C(tot) ratios remaining fairly constant for each patient without a significant time-related trend over the dosing interval. The AUC(cell)/AUC(tot) GM ratios for raltegravir, darunavir and etravirine were 0.039, 0.14 and 1.55, respectively. Conclusions Raltegravir C(cell) correlated with C(tot) (r = 0.86). Raltegravir penetration into cells is low overall (∼5% of plasma levels), with distinct raltegravir cellular penetration varying by as much as 15-fold between patients. The importance of this finding in the context of development of resistance to integrase inhibitors needs to be further investigated
    corecore