21 research outputs found

    The Effects of Sleep on the Acquisition of Skill

    Get PDF
    The current research was designed to evaluate the effect of sleep on memory for the declarative and procedural knowledge components of a cognitive skill. In a training phase, 17 participants in a no-sleep control group practised 120 repetitions of a simple algebra equation at Sam and 22 participants in a sleep group practised the task at 8pm. Novel task inputs were introduced withh1 the same task structure in a transfer phase conducted 12 hours after training for each group. Overnight sleep conferred a 29% performance deficit on the transfer tusk compared to no-sleep controls. The results support the hypothesis that sleep consolidates declarative and procedural knowledge components of an acquired cognitive skill. The prediction that, when consolidated by sleep, knowledge acquired in training creates processing overheads that disrupt post-sleep transfer when task inputs are changed at transfer was upheld. Discussion considered the influence at transfer of three cognitive phenomena: proactive interference, inhibition, and facilitation developed in training. A basis for parsing the relative discrete effects of these phenomena is advanced and a novel framework for predicting skill acquisition and transfer across various training and transfer conditions is outlined. The present study extends support to sleep-consolidation of complex declarative knowledge as well as procedural knowledge, and has implications for theories of memory system dissociation as well as theories of skill acquisition and transfer

    Normative influence on retirement savings decisions: Do people care what employers and the government want?

    Get PDF
    The need for Australians to increase retirement savings has been widely promoted. Yet our understanding of the motivations of individuals to save at a higher rate remains sparse. This article reports the findings of a survey of superannuation fund members and their intentions to contribute more to superannuation and to manage their investment strategy. The article uses the theory of planned behaviour to focus on the important motivational influence of social norms. Formative research identified a number of influential social referents. Among identified referents, the study found that spouses appear to be the primary source of social influence for retirement savings decisions. The government and employers appear to exert little influence, and financial advisors and superannuation funds take up the middle ground of social influence. Possibilities for interventions designed to influence behaviour are discussed; however, conclusions are tempered by the fact that correspondence between intention and behaviour is not tested in the present research

    A bifunctional platinum(II) antitumor agent that forms DNA adducts with affinity for the estrogen receptor

    Get PDF
    A strategy is described for the re-design of DNA damaging platinum(II) complexes to afford elevated toxicity towards cancer cells expressing the estrogen receptor (ER). Two platinum-based toxicants are described in which a DNA damaging warhead, [Pt(en)Cl[subscript 2]] (en, ethylenediamine), is tethered to either of two functional groups. The first agent, [6-(2-amino-ethylamino)-hexyl]-carbamic acid 2-[6-(7α-estra-1,3,5,(10)-triene)-hexylamino]-ethyl ester platinum(II) dichloride ((Est-en)PtCl[subscript 2]), terminates in a ligand for the ER. The second agent is a control compound lacking the steroid; this compound, N-[6-(2-amino-ethylamino)-hexyl]-benzamide platinum(II) dichloride ((Bz-en)PtCl[subscript 2])), terminates in a benzamide moiety, which lacks affinity for the ER. Using a competitive binding assay, Est-en had 28% relative binding affinity (RBA) for the ER as compared to 17β-estradiol. After covalent binding to a synthetic DNA duplex 16-mer, the compound retained its affinity for the ER; specificity of the binding event was demonstrated by the ability of free 17β-estradiol as a competitor to disrupt the DNA adduct-ER complex. The (Est-en)PtCl[subscript 2] compound showed higher toxicity against the ER positive ovarian cancer cell line CAOV3 than did the control compound. (Est-en)PtCl[subscript 2] was also more toxic to the ER positive breast cancer line, MCF-7, than to an ER negative line, MDA-MB231.National Institutes of Health (U.S.) (Grant CA08661)Life Sciences Research Foundatio

    Book Reviews

    Get PDF

    Adult Pgf(-/-) mice behaviour and neuroanatomy are altered by neonatal treatment with recombinant placental growth factor

    No full text
    Offspring of preeclamptic pregnancies have cognitive alterations. Placental growth factor (PGF), is low in preeclampsia; reduced levels may affect brain development. PGF-null mice differ from normal congenic controls in cerebrovasculature, neuroanatomy and behavior. Using brain imaging and behavioral testing, we asked whether developmentally asynchronous (i.e. neonatal) PGF supplementation alters the vascular, neuroanatomic and/or behavioral status of Pgf-/- mice at adulthood. C57BL/6-Pgf-/- pups were treated intraperitoneally on postnatal days 1-10 with vehicle or PGF at 10 pg/g, 70 pg/g or 700 pg/g. These mice underwent behavioral testing and perfusion for MRI and analysis of retinal vasculature. A second cohort of vehicle- or PGF-treated mice was perfused for micro-CT imaging. 10 pg/g PGF-treated mice exhibited less locomotor activity and greater anxiety-like behavior relative to vehicle-treated mice. Depressive-like behavior showed a sex-specific, dose-dependent decrease and was lowest in 700 pg/g PGF-treated females relative to vehicle-treated females. Spatial learning did not differ. MRI revealed smaller volume of three structures in the 10 pg/g group, larger volume of seven structures in the 70 pg/g group and smaller volume of one structure in the 700 pg/g group. No cerebral or retinal vascular differences were detected. Overall, neonatal PGF replacement altered behavior and neuroanatomy of adult Pgf-/- mice.status: publishe

    Placental growth factor influences maternal cardiovascular adaptation to pregnancy in mice

    No full text
    In healthy human pregnancies, placental growth factor (PGF) concentrations rise in maternal plasma during early gestation, peak over Weeks 26-30, then decline. Because PGF in nongravid subjects participates in protection against and recovery from cardiac pathologies, we asked if PGF contributes to pregnancy-induced maternal cardiovascular adaptations. Cardiovascular function and structure were evaluated in virgin, pregnant, and postpartum C56BL/6-Pgf(-) (/) (-) (Pgf(-) (/) (-)) and C57BL/6-Pgf(+/+) (B6) mice using plethysmography, ultrasound, quantitative PCR, and cardiac and renal histology. Pgf(-/-) females had higher systolic blood pressure in early and late pregnancy but an extended, abnormal midpregnancy interval of depressed systolic pressure. Pgf(-/-) cardiac output was lower than gestation day (gd)-matched B6 after midpregnancy. While Pgf(-) (/) (-) left ventricular mass was greater than B6, only B6 showed the expected gestational gain in left ventricular mass. Expression of vasoactive genes in the left ventricle differed at gd8 with elevated Nos expression in Pgf(-) (/) (-) but not at gd14. By gd16, Pgf(-) (/) (-) kidneys were hypertrophic and had glomerular pathology. This study documents for the first time that PGF is associated with the systemic maternal cardiovascular adaptations to pregnancy.status: publishe

    Interaction between dendritic cells and natural killer cells during pregnancy in mice

    No full text
    A complex regulation of innate and adaptive immune responses at the maternal fetal interface promotes tolerance of trophoblast cells carrying paternally derived antigens. Such regulatory functions involve uterine dendritic cells (uDC) and natural killer (uNK) cells. The existence of a NK and DC "cross talk" has been revealed in various experimental settings; its biological significance ranging from cooperative stimulation to cell lysis. Little is known about the presence or role of NK and DC cross talk at the maternal fetal interface. The present study shows that mouse NK and DC interactions are subject to modulation by trophoblast cells in vitro. This interaction promotes a tolerogenic microenvironment characterized by downregulation of the expression of activation markers on uNK cells and uDC and dominance of Th2 cytokines. NK and DC interactions would also influence uterine cell proliferation and this process would be strongly modulated by trophoblast-derived signals. Indeed; while low proliferation rates were observed upon regular coculture allowing direct contact between uterine cells and trophoblasts, incubation in a transwell culture system markedly increased uterine cell proliferation suggesting that soluble factors are key mediators in the molecular "dialog" between the mother and the conceptus during the establishment of mouse pregnancy. Our data further reveal that the regulatory functions of trophoblast cells associated with tolerance induction are impaired in high abortion murine matings. Interestingly, we observed that secretion of interleukin-12p70 by uDC is dramatically abrogated in the presence of uNK cells. Taken together, our results provide the first evidence that a delicate balance of interactions involving NK cells, DC, and trophoblasts at the mouse maternal fetal interface supports a successful pregnancy outcome. © 2008 Springer-Verlag
    corecore