32 research outputs found

    Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis

    Get PDF
    Funder: Kennedy Trust studentshipFunder: Oxford-UCB Prize FellowshipFunder: National Institute of Health Research (NIHR) Newcastle Biomedical Research Centre at Newcastle Hospitals Foundation Trust and Newcastle University and Versus Arthritis Research into Inflammatory Arthritis Centre; ref. 22072).Funder: NIHR Birmingham BRC at the University Hospitals Birmingham NHS Foundation Trust and the University of BirminghamFunder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440Funder: National Institute for Health Research (NIHR) Oxford Biomedical Research CentreFunder: St Baldrick’s FoundationAbstract: Psoriatic arthritis (PsA) is a debilitating immune-mediated inflammatory arthritis of unknown pathogenesis commonly affecting patients with skin psoriasis. Here we use complementary single-cell approaches to study leukocytes from PsA joints. Mass cytometry demonstrates a 3-fold expansion of memory CD8 T cells in the joints of PsA patients compared to peripheral blood. Meanwhile, droplet-based and plate-based single-cell RNA sequencing of paired T cell receptor alpha and beta chain sequences show pronounced CD8 T cell clonal expansions within the joints. Transcriptome analyses find these expanded synovial CD8 T cells to express cycling, activation, tissue-homing and tissue residency markers. T cell receptor sequence comparison between patients identifies clonal convergence. Finally, chemokine receptor CXCR3 is upregulated in the expanded synovial CD8 T cells, while two CXCR3 ligands, CXCL9 and CXCL10, are elevated in PsA synovial fluid. Our data thus provide a quantitative molecular insight into the cellular immune landscape of psoriatic arthritis

    A history of high-power laser research and development in the United Kingdom

    Get PDF
    The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years

    Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis

    Get PDF
    Autoreactive CD4+ T lymphocytes play a vital role in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Since the discovery of T helper 17 cells, there is an ongoing debate whether T helper 1, T helper 17 or both subtypes of T lymphocytes are important for the initiation of autoimmune neuroinflammation. We examined peripheral blood CD4+ cells from patients with active and stable relapsing–remitting multiple sclerosis, and used mice with conditional deletion or over-expression of the transforming growth factor-β inhibitor Smad7, to delineate the role of Smad7 in T cell differentiation and autoimmune neuroinflammation. We found that Smad7 is up-regulated in peripheral CD4+ cells from patients with multiple sclerosis during relapse but not remission, and that expression of Smad7 strongly correlates with T-bet, a transcription factor defining T helper 1 responses. Concordantly, mice with transgenic over-expression of Smad7 in T cells developed an enhanced disease course during experimental autoimmune encephalomyelitis, accompanied by elevated infiltration of inflammatory cells and T helper 1 responses in the central nervous system. On the contrary, mice with a T cell-specific deletion of Smad7 had reduced disease and central nervous system inflammation. Lack of Smad7 in T cells blunted T cell proliferation and T helper 1 responses in the periphery but left T helper 17 responses unaltered. Furthermore, frequencies of regulatory T cells were increased in the central nervous system of mice with a T cell-specific deletion and reduced in mice with a T cell-specific over-expression of Smad7. Downstream effects of transforming growth factor-β on in vitro differentiation of naïve T cells to T helper 1, T helper 17 and regulatory T cell phenotypes were enhanced in T cells lacking Smad7. Finally, Smad7 was induced during T helper 1 differentiation and inhibited during T helper 17 differentiation. Taken together, the level of Smad7 in T cells determines T helper 1 polarization and regulates inflammatory cellular responses. Since a Smad7 deletion in T cells leads to immunosuppression, Smad7 may be a potential new therapeutic target in multiple sclerosis

    Plaque-associated myeloid cells derive from resident microglia in an Alzheimer's disease model

    Get PDF
    Alzheimer's disease (AD) is accompanied by a robust inflammatory response mediated by plaque-associated myeloid cells of the brain. These cells exhibit altered gene expression profiles and serve as a barrier, preventing neuritic dystrophy. The origin of these cells has been controversial and is of therapeutic importance. Here, we genetically labeled different myeloid populations and unequivocally demonstrated that plaque-associated myeloid cells in the AD brain are derived exclusively from resident microglia, with no contribution from circulating peripheral monocytes

    IL-12-and IL-23 in health and disease

    Full text link
    Interleukin (IL)-12 and IL-23 play important roles in the development of experimental autoimmune disease models and numerous afflictions affecting humans. Preclinical data over the last 20 years combined with successful clinical trials has identified a clear relationship between IL-12, IL-23 and the generation of pathogenic T helper cells capable of orchestrating tissue inflammation. Observations made in the clinic have shown that IL-12p40, a common subunit shared by IL-12 and IL-23, is critical to pathologies associated with psoriasis, inflammatory bowel disease (IBD) and tumor growth. These advancements have set in motion the development of a number of potential therapeutics aimed at manipulating IL-12/23 signaling pathways in both mice and humans. This review will discuss a brief history of the understanding and expansion of the IL-12 cytokine family, some difficulties associated with preclinical data interpretation and finally the medicinal interventions that have been developed to combat IL-12/23-driven autoimmune disorders

    Does dietary salt induce autoimmunity?

    Full text link
    Two recent publications suggest that dietary salt may polarize TH17 cells and therefore increase the risk of developing autoimmune disease. Where low salt diets can readily be tested for their therapeutic effects in autoimmune disease, more work is needed to connect dietary salts with the development of immunopathology

    GM-CSF in Neuroinflammation: Licensing Myeloid Cells for Tissue Damage

    Full text link
    Multiple sclerosis (MS) is the prototypical inflammatory disease of the central nervous system (CNS). MS lesions harbor different immune cells, but the contribution of individual cell types to disease etiology and progression is not well understood. In experimental autoimmune encephalomyelitis (EAE), auto-reactive helper T (Th) cells instigate CNS inflammation by acting on myeloid cells via the production of granulocyte-macrophage colony-stimulating factor (GM-CSF). Recent reports have implicated myeloid cells in both the inflammatory process and as executers of tissue damage in the CNS. We review these findings here, and integrate them into a model wherein GM-CSF produced by Th cells coordinates monocyte recruitment to the CNS, and differentiation into pathogenic effectors. We discuss the implications of this model to current therapies for MS, and outline important areas of further inquiry

    Cutting Edge: An IL-17F-Cre EYFP

    No full text
    corecore