32 research outputs found

    Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology

    Get PDF
    Until recently, microbial identification in clinical diagnostic laboratories has mainly relied on conventional phenotypic and gene sequencing identification techniques. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) devices has revolutionized the routine identification of microorganisms in clinical microbiology laboratories by introducing an easy, rapid, high throughput, low-cost, and efficient identification technique. This technology has been adapted to the constraint of clinical diagnostic laboratories and has the potential to replace and/or complement conventional identification techniques for both bacterial and fungal strains. Using standardized procedures, the resolution of MALDI-TOF MS allows accurate identification at the species level of most Gram-positive and Gram-negative bacterial strains with the exception of a few difficult strains that require more attention and further development of the method. Similarly, the routine identification by MALDI-TOF MS of yeast isolates is reliable and much quicker than conventional techniques. Recent studies have shown that MALDI-TOF MS has also the potential to accurately identify filamentous fungi and dermatophytes, providing that specific standardized procedures are established for these microorganisms. Moreover, MALDI-TOF MS has been used successfully for microbial typing and identification at the subspecies level, demonstrating that this technology is a potential efficient tool for epidemiological studies and for taxonomical classificatio

    Early expression of the type III secretion system of Parachlamydia acanthamoebae during a replicative cycle within its natural host cell Acanthamoeba castellanii

    Get PDF
    The type three secretion system (T3SS) operons of Chlamydiales bacteria are distributed in different clusters along their chromosomes and are conserved at both the level of sequence and genetic organization. A complete characterization of the temporal expression of multiple T3SS components at the transcriptional and protein levels has been performed in Parachlamydia acanthamoebae, replicating in its natural host cell Acanthamoeba castellanii. The T3SS components were classified in four different temporal clusters depending on their pattern of expression during the early, mid- and late phases of the infectious cycle. The putative T3SS transcription units predicted in Parachlamydia are similar to those described in Chlamydia trachomatis, suggesting that T3SS units of transcriptional expression are highly conserved among Chlamydiales bacteria. The maximal expression and activation of the T3SS of Parachlamydia occurred during the early to mid-phase of the infectious cycle corresponding to a critical phase during which the intracellular bacterium has (1) to evade and/or block the lytic pathway of the amoeba, (2) to differentiate from elementary bodies (EBs) to reticulate bodies (RBs), and (3) to modulate the maturation of its vacuole to create a replicative niche able to sustain efficient bacterial growt

    Distinct Genomic Features Characterize Two Clades of <i>Corynebacterium diphtheriae</i>: Proposal of <i>Corynebacterium diphtheriae</i> Subsp. <i>diphtheriae</i> Subsp. nov. and <i>Corynebacterium diphtheriae</i> Subsp. <i>lausannense</i> Subsp. nov.

    Get PDF
    &lt;i&gt;Corynebacterium diphtheriae&lt;/i&gt; is the etiological agent of diphtheria, a disease caused by the presence of the diphtheria toxin. However, an increasing number of records report non-toxigenic &lt;i&gt;C. diphtheriae&lt;/i&gt; infections. Here, a &lt;i&gt;C. diphtheriae&lt;/i&gt; strain was recovered from a patient with a past history of bronchiectasis who developed a severe tracheo-bronchitis with multiple whitish lesions of the distal trachea and the mainstem bronchi. Whole-genome sequencing (WGS), performed in parallel with PCR targeting the toxin gene and the Elek test, provided clinically relevant results in a short turnaround time, showing that the isolate was non-toxigenic. A comparative genomic analysis of the new strain (CHUV2995) with 56 other publicly available genomes of &lt;i&gt;C. diphtheriae&lt;/i&gt; revealed that the strains CHUV2995, CCUG 5865 and CMCNS703 share a lower average nucleotide identity (ANI) (95.24 to 95.39%) with the &lt;i&gt;C. diphtheriae&lt;/i&gt; NCTC 11397 &lt;sup&gt;T&lt;/sup&gt; reference genome than all other &lt;i&gt;C. diphtheriae&lt;/i&gt; genomes (&gt;98.15%). Core genome phylogeny confirmed the presence of two monophyletic clades. Based on these findings, we propose here two new &lt;i&gt;C. diphtheriae&lt;/i&gt; subspecies to replace the lineage denomination used in previous multilocus sequence typing studies: &lt;i&gt;C. diphtheriae&lt;/i&gt; subsp. &lt;i&gt;lausannense&lt;/i&gt; subsp. nov. (instead of lineage-2), regrouping strains CHUV2995, CCUG 5865, and CMCNS703, and &lt;i&gt;C. diphtheriae&lt;/i&gt; subsp. &lt;i&gt;diphtheriae&lt;/i&gt; subsp. nov, regrouping all other &lt;i&gt;C. diphtheriae&lt;/i&gt; in the dataset (instead of lineage-1). Interestingly, members of subspecies &lt;i&gt;lausannense&lt;/i&gt; displayed a larger genome size than subspecies &lt;i&gt;diphtheriae&lt;/i&gt; and were enriched in COG categories related to transport and metabolism of lipids (I) and inorganic ion (P). Conversely, they lacked all genes involved in the synthesis of pili (SpaA-type, SpaD-type and SpaH-type), molybdenum cofactor and of the nitrate reductase. Finally, the CHUV2995 genome is particularly enriched in mobility genes and harbors several prophages. The genome encodes a type II-C CRISPR-Cas locus with 2 spacers that lacks &lt;i&gt;csn2&lt;/i&gt; or &lt;i&gt;cas4&lt;/i&gt; , which could hamper the acquisition of new spacers and render strain CHUV2995 more susceptible to bacteriophage infections and gene acquisition through various mechanisms of horizontal gene transfer

    Adaptation of Pseudomonas aeruginosa to constant sub-inhibitory concentrations of quaternary ammonium compounds

    Get PDF
    Quaternary ammonium compounds (QACs) are widely used in consumer products for disinfection purposes. QACs are frequently detected in aquatic systems at sub-inhibitory concentrations and were found to affect the development of antimicrobial resistance if bacteria are exposed to increasing concentrations. However, the effect of a constant sub-inhibitory concentration on the development of bacterial resistance is unknown. A constant exposure to 88% of the minimum inhibitory concentration (MIC) of benzalkonium chloride (BAC) led to an increase of the MIC of P. aeruginosa. It increased from 80 mg l(-1) to 150 mg l(-1) after 10 cycles of exposure and remained stable after removal of BAC. When exposed to cetyltrimethyl ammonium chloride (CTMA), P. aeruginosa's MIC increased from 110 mg l(-1) to 160 mg l(-1) after 10 cycles of exposure and decreased to 120 mg l(-1) after removal of CTMA. Additionally, cross-resistance between the QACs was observed. When exposed to BAC, the MIC for CTMA increased from 110 mg l(-1) to 200 mg l(-1), and when exposed to CTMA, the MIC for BAC increased from 80 mg l(-1) to 160 mg l(-1). In contrast, the susceptibility to 16 antibiotics was not significantly affected by exposure to QACs. Finally, analyses of the membranes' nanomechanical properties of P. aeruginosa with atomic force microscopy (AFM) showed increases in cell roughness, adhesion and stiffness after treatment with CTMA. Since sub-inhibitory concentrations of QACs can be detected in (technical) aquatic systems including sediments, this may lead to a dissemination of bacteria with higher QAC resistance in the environmen

    Crescent and star shapes of members of the Chlamydiales order: impact of fixative methods

    Get PDF
    Members of the Chlamydiales order all share a biphasic lifecycle alternating between small infectious particles, the elementary bodies (EBs) and larger intracellular forms able to replicate, the reticulate bodies. Whereas the classical Chlamydia usually harbours round-shaped EBs, some members of the Chlamydia-related families display crescent and star-shaped morphologies by electron microscopy. To determine the impact of fixative methods on the shape of the bacterial cells, different buffer and fixative combinations were tested on purified EBs of Criblamydia sequanensis, Estrella lausannensis, Parachlamydia acanthamoebae, and Waddlia chondrophila. A linear discriminant analysis was performed on particle metrics extracted from electron microscopy images to recognize crescent, round, star and intermediary forms. Depending on the buffer and fixatives used, a mixture of alternative shapes were observed in varying proportions with stars and crescents being more frequent in C. sequanensis and P. acanthamoebae, respectively. No tested buffer and chemical fixative preserved ideally the round shape of a majority of bacteria and other methods such as deep-freezing and cryofixation should be applied. Although crescent and star shapes could represent a fixation artifact, they certainly point towards a diverse composition and organization of membrane proteins or intracellular structures rather than being a distinct developmental stag

    Treatment and Outcomes of Clostridioides difficile Infection in Switzerland: A Two-Center Retrospective Cohort Study

    Full text link
    Objectives: Clostridioides difficile infection (CDI) is the leading cause of healthcare-associated diarrhea, often complicated by severe infection and recurrence with increased morbidity and mortality. Data from large cohorts in Switzerland are scarce. We aimed to describe diagnostic assays, treatment, outcomes, and risk factors for CDI in a large cohort of patients in Switzerland. Methods: We conducted a retrospective cohort study of CDI episodes diagnosed in patients from two tertiary care hospitals in Switzerland. During a 3-month follow-up, we used a composite outcome combining clinical cure at day 10, recurrence at week 8, or death, to evaluate a patient's response. Unfavorable outcomes consisted in the occurrence of any of these events. Results: From January 2014 to December 2018, we included 826 hospitalized patients with documented CDI. Overall, 299 patients (36.2%) had a severe infection. Metronidazole was used in 566 patients (83.7%), compared to 82 patients (12.1%) treated with vancomycin and 28 patients (4.1%) treated with fidaxomicin. Overall mortality at week 8 was at 15.3% (112/733). Eighty-six patients (12.7%) presented with clinical failure at day 10, and 78 (14.9%) presented with recurrence within 8 weeks; 269 (39.8%) met the composite outcome of death, clinical failure, or recurrence. The Charlson Comorbidity Index score (p &lt; 0.001), leukocytes &gt; 15 G/L (p = 0.008), and the use of metronidazole (p = 0.012) or vancomycin (p = 0.049) were factors associated with the composite outcome. Conclusions: Our study provides valuable insights on CDI treatment and outcomes in Switzerland, highlights the heterogeneity in practices among centers, and underlines the need for the active monitoring of clinical practices and their impact on clinical outcomes through large multicentric cohorts. Keywords: Clostridioides difficile; mortality; outcomes; predictive factors; recurrence; severe infection; treatment

    Comparison of Inoculation with the InoqulA and WASP Automated Systems with Manual Inoculation.

    Get PDF
    The quality of sample inoculation is critical for achieving an optimal yield of discrete colonies in both monomicrobial and polymicrobial samples to perform identification and antibiotic susceptibility testing. Consequently, we compared the performance between the InoqulA (BD Kiestra), the WASP (Copan), and manual inoculation methods. Defined mono- and polymicrobial samples of 4 bacterial species and cloudy urine specimens were inoculated on chromogenic agar by the InoqulA, the WASP, and manual methods. Images taken with ImagA (BD Kiestra) were analyzed with the VisionLab version 3.43 image analysis software to assess the quality of growth and to prevent subjective interpretation of the data. A 3- to 10-fold higher yield of discrete colonies was observed following automated inoculation with both the InoqulA and WASP systems than that with manual inoculation. The difference in performance between automated and manual inoculation was mainly observed at concentrations of &gt;10(6) bacteria/ml. Inoculation with the InoqulA system allowed us to obtain significantly more discrete colonies than the WASP system at concentrations of &gt;10(7) bacteria/ml. However, the level of difference observed was bacterial species dependent. Discrete colonies of bacteria present in 100- to 1,000-fold lower concentrations than the most concentrated populations in defined polymicrobial samples were not reproducibly recovered, even with the automated systems. The analysis of cloudy urine specimens showed that InoqulA inoculation provided a statistically significantly higher number of discrete colonies than that with WASP and manual inoculation. Consequently, the automated InoqulA inoculation greatly decreased the requirement for bacterial subculture and thus resulted in a significant reduction in the time to results, laboratory workload, and laboratory costs

    High Throughput Sequencing and Proteomics to Identify Immunogenic Proteins of a New Pathogen: The Dirty Genome Approach

    Get PDF
    BACKGROUND:With the availability of new generation sequencing technologies, bacterial genome projects have undergone a major boost. Still, chromosome completion needs a costly and time-consuming gap closure, especially when containing highly repetitive elements. However, incomplete genome data may be sufficiently informative to derive the pursued information. For emerging pathogens, i.e. newly identified pathogens, lack of release of genome data during gap closure stage is clearly medically counterproductive. METHODS/PRINCIPAL FINDINGS:We thus investigated the feasibility of a dirty genome approach, i.e. the release of unfinished genome sequences to develop serological diagnostic tools. We showed that almost the whole genome sequence of the emerging pathogen Parachlamydia acanthamoebae was retrieved even with relatively short reads from Genome Sequencer 20 and Solexa. The bacterial proteome was analyzed to select immunogenic proteins, which were then expressed and used to elaborate the first steps of an ELISA. CONCLUSIONS/SIGNIFICANCE:This work constitutes the proof of principle for a dirty genome approach, i.e. the use of unfinished genome sequences of pathogenic bacteria, coupled with proteomics to rapidly identify new immunogenic proteins useful to develop in the future specific diagnostic tests such as ELISA, immunohistochemistry and direct antigen detection. Although applied here to an emerging pathogen, this combined dirty genome sequencing/proteomic approach may be used for any pathogen for which better diagnostics are needed. These genome sequences may also be very useful to develop DNA based diagnostic tests. All these diagnostic tools will allow further evaluations of the pathogenic potential of this obligate intracellular bacterium

    Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population-Based Seroprevalence Studies

    Get PDF
    SARS-CoV-2-specific antibody responses to the Spike (S) protein monomer, S protein native trimeric form or the nucleocapsid (N) proteins were evaluated in cohorts of individuals with acute infection (n=93) and in individuals enrolled in a post-infection seroprevalence population study (n=578) in Switzerland. Commercial assays specific for the S1 monomer, for the N protein and a newly developed Luminex assay using the S protein trimer were found to be equally sensitive in antibody detection in the acute infection phase samples. Interestingly, as compared to anti-S antibody responses, those against the N protein appear to wane in the post-infection cohort. Seroprevalence in a 'positive patient contacts' group (n=177) was underestimated by N protein assays by 10.9 to 32.2% and the 'random selected' general population group (n=311) was reduced up to 45% reduction relative to S protein assays. The overall reduction in seroprevalence targeting only anti-N antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was significantly more sensitive as compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.IMPORTANCE In the present study, we have determined SARS-CoV-2-specific antibody responses in sera of acute and post-infection phase subjects. Our results indicate that antibody responses against viral S and N proteins were equally sensitive in the acute phase of infection but that responses against N appear to wane in the post-infection phase while those against S protein persist over time. The most sensitive serological assay in both acute and post-infection phases used the native S protein trimer as binding antigen that has significantly greater conformational epitopes for antibody binding compared to the S1 monomer protein used in other assays. We believe that these results are extremely important in order to generate correct estimates of SARS-CoV-2 infections in the general population. Furthermore, the assessment of antibody responses against the trimeric S protein will be critical to evaluate the durability of the antibody response and for the characterization of a vaccine-induced antibody response

    The Waddlia Genome: A Window into Chlamydial Biology

    Get PDF
    Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2′116′312bp chromosome and a 15′593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae
    corecore