189 research outputs found

    Antenatal care and perinatal outcomes in Kwale district, Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of antenatal care (ANC) for improving perinatal outcomes is well established. However access to ANC in Kenya has hardly changed in the past 20 years. This study aims to identify the determinants of attending ANC and the association between attendance and behavioural and perinatal outcomes (live births and healthy birthweight) for women in the Kwale region of Kenya.</p> <p>Method</p> <p>A Cohort survey of 1,562 perinatal outcomes (response rate 100%) during 2004–05 in the catchment areas for five Ministry of Health dispensaries in two divisions of the Kwale region. The associations between background and behavioural decisions on ANC attendance and perinatal outcomes were explored using univariate analysis and multivariate logistic regression models with backwards-stepwise elimination. The outputs from these analyses were reported as odds ratios (OR) with 95% confidence intervals (CI).</p> <p>Results</p> <p>Only 32% (506/1,562) of women reported having any ANC. Women with secondary education or above (adjusted OR 1.83; 95% CI 1.06–3.15) were more likely to attend for ANC, while those living further than 5 km from a dispensary were less likely to attend (OR 0.29; 95% CI 0.22–0.39). Paradoxically, however, the number of ANC visits increased with distance from the dispensary (OR 1.46; 95% CI 1.33–1.60). Women attending ANC at least twice were more likely to have a live birth (vs. stillbirth) in both multivariate models. Women attending for two ANC visits (but not more than two) were more likely to have a healthy weight baby (OR 4.39; 95% CI 1.36–14.15).</p> <p>Conclusion</p> <p>The low attendance for ANC, combined with a positive relationship between attendance and perinatal outcomes for the women in the Kwale region highlight the need for further research to understand reasons for attendance and non-attendance and also for strategies to be put in place to improve attendance for ANC.</p

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies

    Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers

    Get PDF
    A recombinant inbred line (RIL) population, derived from two Arabidopsis thaliana accessions, and the corresponding testcrosses with these two original accessions were used for the development and validation of machine learning models to predict the biomass of hybrids. Genetic and metabolic information of the RILs served as predictors. Feature selection reduced the number of variables (genetic and metabolic markers) in the models by more than 80% without impairing the predictive power. Thus, potential biomarkers have been revealed. Metabolites were shown to bear information on inherited macroscopic phenotypes. This proof of concept could be interesting for breeders. The example population exhibits substantial mid-parent biomass heterosis. The results of feature selection could therefore be used to shed light on the origin of heterosis. In this respect, mainly dominance effects were detected

    Season of birth, clinical manifestations and Dexamethasone Suppression Test in unipolar major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reports in the literature suggest that the season of birth might constitute a risk factor for the development of a major psychiatric disorder, possibly because of the effect environmental factors have during the second trimester of gestation. The aim of the current paper was to study the possible relationship of the season of birth and current clinical symptoms in unipolar major depression.</p> <p>Methods</p> <p>The study sample included 45 DSM-IV major depressive patients and 90 matched controls. The SCAN v. 2.0, Hamilton Depression Rating Scale (HDRS) and Hamilton Anxiety Scale (HAS) were used to assess symptomatology, and the 1 mg Dexamethasone Suppression Test (DST) was used to subcategorize patients.</p> <p>Results</p> <p>Depressed patients as a whole did not show differences in birth season from controls. However, those patients born during the spring manifested higher HDRS while those born during the summer manifested the lowest HAS scores. DST non-suppressors were almost exclusively (90%) likely to be born during autumn and winter. No effect from the season of birth was found concerning the current severity of suicidal ideation or attempts.</p> <p>Discussion</p> <p>The current study is the first in this area of research using modern and rigid diagnostic methodology and a biological marker (DST) to categorize patients. Its disadvantages are the lack of data concerning DST in controls and a relatively small size of patient sample. The results confirm the effect of seasonality of birth on patients suffering from specific types of depression.</p

    Neonatal Astrocyte Damage Is Sufficient to Trigger Progressive Striatal Degeneration in a Rat Model of Glutaric Acidemia-I

    Get PDF
    BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss. METHODOLOGY/PRINCIPAL FINDINGS: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable progression of disease in children with GA-I

    Building capacity for evidence informed decision making in public health: a case study of organizational change

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Core competencies for public health in Canada require proficiency in evidence informed decision making (EIDM). However, decision makers often lack access to information, many workers lack knowledge and skills to conduct systematic literature reviews, and public health settings typically lack infrastructure to support EIDM activities. This research was conducted to explore and describe critical factors and dynamics in the early implementation of one public health unit's strategic initiative to develop capacity to make EIDM standard practice.</p> <p>Methods</p> <p>This qualitative case study was conducted in one public health unit in Ontario, Canada between 2008 and 2010. In-depth information was gathered from two sets of semi-structured interviews and focus groups (n = 27) with 70 members of the health unit, and through a review of 137 documents. Thematic analysis was used to code the key informant and document data.</p> <p>Results</p> <p>The critical factors and dynamics for building EIDM capacity at an organizational level included: clear vision and strong leadership, workforce and skills development, ability to access research (library services), fiscal investments, acquisition and development of technological resources, a knowledge management strategy, effective communication, a receptive organizational culture, and a focus on change management.</p> <p>Conclusion</p> <p>With leadership, planning, commitment and substantial investments, a public health department has made significant progress, within the first two years of a 10-year initiative, towards achieving its goal of becoming an evidence informed decision making organization.</p

    Time-Lapse Analysis and Mathematical Characterization Elucidate Novel Mechanisms Underlying Muscle Morphogenesis

    Get PDF
    Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture) and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininβ1 or lamininγ1 contrast with later dystrophic phenotypes in lamininα2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length
    corecore