76 research outputs found

    High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler-Poisson System in the Quasineutral Limit

    Full text link
    In this paper, the design and analysis of high order accurate IMEX finite volume schemes for the compressible Euler-Poisson (EP) equations in the quasineutral limit is presented. As the quasineutral limit is singular for the governing equations, the time discretisation is tantamount to achieving an accurate numerical method. To this end, the EP system is viewed as a differential algebraic equation system (DAEs) via the method of lines. As a consequence of this vantage point, high order linearly semi-implicit (SI) time discretisation are realised by employing a novel combination of the direct approach used for implicit discretisation of DAEs and, two different classes of IMEX-RK schemes: the additive and the multiplicative. For both the time discretisation strategies, in order to account for rapid plasma oscillations in quasineutral regimes, the nonlinear Euler fluxes are split into two different combinations of stiff and non-stiff components. The high order scheme resulting from the additive approach is designated as a classical scheme while the one generated by the multiplicative approach possesses the asymptotic preserving (AP) property. Time discretisations for the classical and the AP schemes are performed by standard IMEX-RK and SI-IMEX-RK methods, respectively so that the stiff terms are treated implicitly and the non-stiff ones explicitly. In order to discretise in space a Rusanov-type central flux is used for the non-stiff part, and simple central differencing for the stiff part. AP property is also established for the space-time fully-discrete scheme obtained using the multiplicative approach. Results of numerical experiments are presented, which confirm that the high order schemes based on the SI-IMEX-RK time discretisation achieve uniform second order convergence with respect to the Debye length and are AP in the quasineutral limit

    Asymptotically complexity diminishing schemes (ACDS) for kinetic equations in the diffusive scaling

    Get PDF
    In this work, we develop a new class of numerical schemes for collisional kinetic equations in the diffusive regime. The first step consists in reformulating the problem by decomposing the solution in the time evolution of an equilibrium state plus a perturbation. Then, the scheme combines a Monte Carlo solver for the perturbation with an Eulerian method for the equilibrium part, and is designed in such a way to be uniformly stable with respect to the diffusive scaling and to be consistent with the asymptotic diffusion equation. Moreover, since particles are only used to describe the perturbation part of the solution, the scheme becomes computationally less expensive – and is thus an asymptotically complexity diminishing scheme (ACDS) – as the solution approaches the equilibrium state due to the fact that the number of particles diminishes accordingly. This contrasts with standard methods for kinetic equations where the computational cost increases (or at least does not decrease) with the number of interactions. At the same time, the statistical error due to the Monte Carlo part of the solution decreases as the system approaches the equilibrium state: the method automatically degenerates to a solution of the macroscopic diffusion equation in the limit of infinite number of interactions. After a detailed description of the method, we perform several numerical tests and compare this new approach with classical numerical methods on various problems up to the full three dimensional case

    Uncertainty quantification for kinetic models in socio-economic and life sciences

    Full text link
    Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker--Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic Equations

    The Moment Guided Monte Carlo method for the Boltzmann equation

    Full text link
    In this work we propose a generalization of the Moment Guided Monte Carlo method developed in [11]. This approach permits to reduce the variance of the particle methods through a matching with a set of suitable macroscopic moment equations. In order to guarantee that the moment equations provide the correct solutions, they are coupled to the kinetic equation through a non equilibrium term. Here, at the contrary to the previous work in which we considered the simplified BGK operator, we deal with the full Boltzmann operator. Moreover, we introduce an hybrid setting which permits to entirely remove the resolution of the kinetic equation in the limit of infinite number of collisions and to consider only the solution of the compressible Euler equation. This modification additionally reduce the statistical error with respect to our previous work and permits to perform simulations of non equilibrium gases using only a few number of particles. We show at the end of the paper several numerical tests which prove the efficiency and the low level of numerical noise of the method.Comment: arXiv admin note: text overlap with arXiv:0908.026

    A Multilevel Monte Carlo Asymptotic-Preserving Particle Method for Kinetic Equations in the Diffusion Limit

    Full text link
    We propose a multilevel Monte Carlo method for a particle-based asymptotic-preserving scheme for kinetic equations. Kinetic equations model transport and collision of particles in a position-velocity phase-space. With a diffusive scaling, the kinetic equation converges to an advection-diffusion equation in the limit of zero mean free path. Classical particle-based techniques suffer from a strict time-step restriction to maintain stability in this limit. Asymptotic-preserving schemes provide a solution to this time step restriction, but introduce a first-order error in the time step size. We demonstrate how the multilevel Monte Carlo method can be used as a bias reduction technique to perform accurate simulations in the diffusive regime, while leveraging the reduced simulation cost given by the asymptotic-preserving scheme. We describe how to achieve the necessary correlation between simulation paths at different levels and demonstrate the potential of the approach via numerical experiments.Comment: 20 pages, 7 figures, published in Monte Carlo and Quasi-Monte Carlo Methods 2018, correction of minor typographical error

    Charge-conserving grid based methods for the Vlasov–Maxwell equations

    Get PDF
    International audienceIn this article we introduce numerical schemes for the Vlasov-Maxwell equations relying on different kinds of grid based Vlasov solvers, as oppo-site to PIC schemes, that enforce a discrete continuity equation. The idea underlying this schemes relies (see [14]) on a time splitting scheme between configuration space and velocity space for the Vlasov equation and on the computation of the discrete current in a form that is compatible with the discrete Maxwell solver
    • …
    corecore