4,626 research outputs found
Exploratory investigation of the effect of nylon grain size on ablation of phenolic nylon
Exploratory investigation of nylon grain size effect on ablation of phenolic nylo
The European Marine Science Educators Association (EMSEA), providing learning opportunities and resources for teachers
Meta-analysis of the Sea Change Consultation Reports
Sea Change is a three-year, EU funded, Horizon 2020 project with 17 partners in nine European countries (Belgium, Denmark, Greece, Sweden, France, Ireland, Portugal, Spain and UK). During April and May 2016, eight of these countries (except France) carried out consultations with education stakeholders (classified as incumbents, regulating agencies and challengers, see p. xii) for the purpose of gaining deeper insights into the barriers to teaching 12-19 year olds about the ocean, and to identify options for overcoming these barriers. The Sea Change partners used the method Collective intelligence (CI) to consult with the education stakeholders. The CI method used facilitation and problem solving to harmonise input from education stakeholders from different backgrounds and perspectives. This report was built on the Collective Intelligence consultation work completed and reported in Sea For Society (D2.4 Global Analysis of the SFS Consultation Process from a Social Sciences Perspective), as reported in Domegan et al., 2014
Temperature profiles in high gradient furnaces
Accurate temperature measurement of the furnace environment is very important in both the science and technology of crystal growth as well as many other materials processing operations. A high degree of both accuracy and precision is acutely needed in the directional solidification of compound semiconductors in which the temperature profiles control the freezing isotherm which, in turn, affects the composition of the growth with a concomitant feedback perturbation on the temperature profile. Directional solidification requires a furnace configuration that will transport heat through the sample being grown. A common growth procedure is the Bridgman Stockbarger technique which basically consists of a hot zone and a cold zone separated by an insulator. In a normal growth procedure the material, contained in an ampoule, is melted in the hot zone and is then moved relative to the furnace toward the cold zone and solidification occurs in the insulated region. Since the primary path of heat between the hot and cold zones is through the sample, both axial and radial temperature gradients exist in the region of the growth interface. There is a need to know the temperature profile of the growth furnace with the crystal that is to be grown as the thermal load. However it is usually not feasible to insert thermocouples inside an ampoule and thermocouples attached to the outside wall of the ampoule have both a thermal and a mechanical contact problem as well as a view angle problem. The objective is to present a technique of calibrating a furnace with a thermal load that closely matches the sample to be grown and to describe procedures that circumvent both the thermal and mechanical contact problems
Recommended from our members
Genome Sequence of the Chestnut Blight Fungus Cryphonectria parasitica EP155: A Fundamental Resource for an Archetypical Invasive Plant Pathogen.
Cryphonectria parasitica is the causal agent of chestnut blight, a fungal disease that almost entirely eliminated mature American chestnut from North America over a 50-year period. Here, we formally report the genome of C. parasitica EP155 using a Sanger shotgun sequencing approach. After finishing and integration with simple-sequence repeat markers, the assembly was 43.8 Mb in 26 scaffolds (L50 = 5; N50 = 4.0Mb). Eight chromosomes are predicted: five scaffolds have two telomeres and six scaffolds have one telomere sequence. In total, 11,609 gene models were predicted, of which 85% show similarities to other proteins. This genome resource has already increased the utility of a fundamental plant pathogen experimental system through new understanding of the fungal vegetative incompatibility system, with significant implications for enhancing mycovirus-based biological control
Existence of solutions for a higher order non-local equation appearing in crack dynamics
In this paper, we prove the existence of non-negative solutions for a
non-local higher order degenerate parabolic equation arising in the modeling of
hydraulic fractures. The equation is similar to the well-known thin film
equation, but the Laplace operator is replaced by a Dirichlet-to-Neumann
operator, corresponding to the square root of the Laplace operator on a bounded
domain with Neumann boundary conditions (which can also be defined using the
periodic Hilbert transform). In our study, we have to deal with the usual
difficulty associated to higher order equations (e.g. lack of maximum
principle). However, there are important differences with, for instance, the
thin film equation: First, our equation is nonlocal; Also the natural energy
estimate is not as good as in the case of the thin film equation, and does not
yields, for instance, boundedness and continuity of the solutions (our case is
critical in dimension in that respect)
Resolving the Azimuthal Ambiguity in Vector Magnetogram Data with the Divergence-Free Condition: Application to Discrete Data
We investigate how the divergence-free property of magnetic fields can be
exploited to resolve the azimuthal ambiguity present in solar vector
magnetogram data, by using line-of-sight and horizontal heliographic derivative
information as approximated from discrete measurements. Using synthetic data we
test several methods that each make different assumptions about how the
divergence-free property can be used to resolve the ambiguity. We find that the
most robust algorithm involves the minimisation of the absolute value of the
divergence summed over the entire field of view. Away from disk centre this
method requires the sign and magnitude of the line-of-sight derivatives of all
three components of the magnetic field vector.Comment: Solar Physics, in press, 20 pages, 11 figure
The changing patterns of group politics in Britain
Two interpretations of ways in which group politics in Britain have presented challenges to democracy are reviewed: neo-corporatism or pluralistic stagnation and the rise of single issue interest groups. The disappearance of the first paradigm created a political space for the second to emerge. A three-phase model of group activity is developed: a phase centred around production interests, followed by the development of broadly based 'other regarding' groups, succeeded by fragmented, inner directed groups focusing on particular interests. Explanations of the decay of corporatism are reviewed. Single issue group activity has increased as party membership has declined and is facilitated by changes in traditional media and the development of the internet. Such groups can overload the policy-making process and frustrate depoliticisation. Debates about the constitution and governance have largely ignored these issues and there is need for a debate
Tunneling Conductance and Coulomb Blockade Peak Splitting of Two Quantum Dots Connected by a Quantum Point Contact
By using bosonization method and unitary transformation, we give a general
relation between the dimensionless tunneling conductance and the fractional
Coulomb blockade conductance peak splitting which is valid both for weak and
strong transmission between two quantum dots, and show that the tunneling
conductance has a linear temperature dependence in the low energy and low
temperature limit.Comment: 12 pages, Revtex, no figures, to appear in Phys. Rev.
NEXUS/Physics: An interdisciplinary repurposing of physics for biologists
In response to increasing calls for the reform of the undergraduate science
curriculum for life science majors and pre-medical students (Bio2010,
Scientific Foundations for Future Physicians, Vision & Change), an
interdisciplinary team has created NEXUS/Physics: a repurposing of an
introductory physics curriculum for the life sciences. The curriculum interacts
strongly and supportively with introductory biology and chemistry courses taken
by life sciences students, with the goal of helping students build general,
multi-discipline scientific competencies. In order to do this, our two-semester
NEXUS/Physics course sequence is positioned as a second year course so students
will have had some exposure to basic concepts in biology and chemistry.
NEXUS/Physics stresses interdisciplinary examples and the content differs
markedly from traditional introductory physics to facilitate this. It extends
the discussion of energy to include interatomic potentials and chemical
reactions, the discussion of thermodynamics to include enthalpy and Gibbs free
energy, and includes a serious discussion of random vs. coherent motion
including diffusion. The development of instructional materials is coordinated
with careful education research. Both the new content and the results of the
research are described in a series of papers for which this paper serves as an
overview and context.Comment: 12 page
- …
