25 research outputs found

    Rôle du récepteur Sigma-1 sur la régulation des canaux ioniques impliqués dans la carcinogenèse

    Get PDF
    The sigma-1 receptor is a chaperone protein active in damaged tissues. The sigma-1 receptor is mainly expressed into brain and have a neuroprotective role in ischemia and neurodegenerative diseases. The sigma-1 receptor is also expressed into cancer cell lines and recent investigations suggest its involvement into proliferation and apoptosis. However, its role in carcinogenesis remains to delineating. Ion channels are involved in numerous physiological processes (heart beating, nervous influx, …). These membrane proteins currently emerge as a new class of therapeutic targets in cancer. During my thesis, I observed that the sigma-1 receptor regulates voltage-dependent potassium channel hERG and voltage-dependent sodium channel Nav1.5 activities respectively into leukemic and breast cancer cell lines. I also demonstrated that the sigma-1 receptor, through its action on hERG channel, increases leukemia invasiveness by promoting interaction with tumor microenvironment. These results highlight the role of the sigma-1 receptor on cancer cell electrical plasticity and suggest this chaperone protein as a potential therapeutic target to limit tumor progression.Le récepteur sigma-1 est une protéine chaperonne active dans des tissus lésés. Le récepteur sigma-1 est principalement exprimé dans le cerveau et joue un rôle neuroprotecteur dans l’ischémie ou les maladies neurodégénératives. Le récepteur sigma-1 est également exprimé dans des lignées cellulaires cancéreuses et des travaux récents suggèrent sa participation dans la prolifération et l’apoptose. Cependant, son rôle dans la carcinogenèse reste à découvrir. Les canaux ioniques sont impliqués dans de nombreux processus physiologiques (rythme cardiaque, influx nerveux, …). Ces protéines membranaires émergent actuellement comme une nouvelle famille de cibles thérapeutiques dans les cancers. Au cours de ma thèse, j’ai montré que le récepteur sigma-1 régule l’activité du canal potassique voltage-dépendent hERG et du canal sodique voltage-dépendent Nav1.5 respectivement dans des cellules leucémiques et des cellules issues de cancer du sein. J’ai également montré que le récepteur sigma-1, à travers son action sur l’adressage du canal hERG, augmente l’invasivité des cellules leucémiques en favorisant leur interaction avec le microenvironnement tumoral. Ces résultats mettent en évidence le rôle du récepteur sigma-1 sur la plasticité électrique des cellules cancéreuses et suggèrent l’intérêt de cette protéine chaperonne comme cible thérapeutique potentielle pour limiter la progression tumorale

    The multifaceted role of TMEM16A in cancer.

    No full text

    Role of Sigma-1 receptor in the regulation of ion channels involved in carcinogenesis

    No full text
    Le récepteur sigma-1 est une protéine chaperonne active dans des tissus lésés. Le récepteur sigma-1 est principalement exprimé dans le cerveau et joue un rôle neuroprotecteur dans l’ischémie ou les maladies neurodégénératives. Le récepteur sigma-1 est également exprimé dans des lignées cellulaires cancéreuses et des travaux récents suggèrent sa participation dans la prolifération et l’apoptose. Cependant, son rôle dans la carcinogenèse reste à découvrir. Les canaux ioniques sont impliqués dans de nombreux processus physiologiques (rythme cardiaque, influx nerveux, …). Ces protéines membranaires émergent actuellement comme une nouvelle famille de cibles thérapeutiques dans les cancers. Au cours de ma thèse, j’ai montré que le récepteur sigma-1 régule l’activité du canal potassique voltage-dépendent hERG et du canal sodique voltage-dépendent Nav1.5 respectivement dans des cellules leucémiques et des cellules issues de cancer du sein. J’ai également montré que le récepteur sigma-1, à travers son action sur l’adressage du canal hERG, augmente l’invasivité des cellules leucémiques en favorisant leur interaction avec le microenvironnement tumoral. Ces résultats mettent en évidence le rôle du récepteur sigma-1 sur la plasticité électrique des cellules cancéreuses et suggèrent l’intérêt de cette protéine chaperonne comme cible thérapeutique potentielle pour limiter la progression tumorale.The sigma-1 receptor is a chaperone protein active in damaged tissues. The sigma-1 receptor is mainly expressed into brain and have a neuroprotective role in ischemia and neurodegenerative diseases. The sigma-1 receptor is also expressed into cancer cell lines and recent investigations suggest its involvement into proliferation and apoptosis. However, its role in carcinogenesis remains to delineating. Ion channels are involved in numerous physiological processes (heart beating, nervous influx, …). These membrane proteins currently emerge as a new class of therapeutic targets in cancer. During my thesis, I observed that the sigma-1 receptor regulates voltage-dependent potassium channel hERG and voltage-dependent sodium channel Nav1.5 activities respectively into leukemic and breast cancer cell lines. I also demonstrated that the sigma-1 receptor, through its action on hERG channel, increases leukemia invasiveness by promoting interaction with tumor microenvironment. These results highlight the role of the sigma-1 receptor on cancer cell electrical plasticity and suggest this chaperone protein as a potential therapeutic target to limit tumor progression

    Interplay between Prostate Cancer and Adipose Microenvironment: A Complex and Flexible Scenario

    No full text
    Adipose tissue is part of the prostate cancer (PCa) microenvironment not only in the periprostatic area, but also in the most frequent metastatic sites, such as bone marrow and pelvic lymph nodes. The involvement of periprostatic adipose tissue (PPAT) in the aggressiveness of PCa is strongly suggested by numerous studies. Many molecules play a role in the reciprocal interaction between adipocytes and PCa cells, including adipokines, hormones, lipids, and also lipophilic pollutants stored in adipocytes. The crosstalk has consequences not only on cancer cell growth and metastatic potential, but also on adipocytes. Although most of the molecules released by PPAT are likely to promote tumor growth and the migration of cancer cells, others, such as the adipokine adiponectin and the n-6 or n-3 polyunsaturated fatty acids (PUFAs), have been shown to have anti-tumor properties. The effects of PPAT on PCa cells might therefore depend on the balance between the pro- and anti-tumor components of PPAT. In addition, genetic and environmental factors involved in the risk and/or aggressiveness of PCa, including obesity and diet, are able to modulate the interactions between PPAT and cancer cells and their consequences on the growth and the metastatic potential of PCa

    The Orai-1 and STIM-1 complex controls human dendritic cell maturation.

    Get PDF
    Ca(2+) signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca(2+) signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca(2+) stores that results in a store-operated Ca(2+) entry (SOCE). This Ca(2+) influx was inhibited by 2-APB and exhibited a Ca(2+)permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca(2+) entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins
    corecore