422 research outputs found

    Where do "red and dead" early-type void galaxies come from?

    Full text link
    Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a sub-population of bright red void galaxies can also be found, whose star formation was shut down long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids? We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium Simulation. We show that a global star formation suppression mechanism in the form of low luminosity "radio mode" AGN heating is sufficient to reproduce the observed population of void early-types. Radio mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately M_vir~10^12.5 M_sun, gas cooling onto the galaxy is suppressed and star formation subsequently fades. In the Millennium Simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high mass tail above this critical threshold. In such void halos, radio mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by halos of similar mass are predicted to have similar properties, consistent with observations.Comment: 6 pages, 3 figures, accepted MNRA

    The Theoretical Astrophysical Observatory: Cloud-Based Mock Galaxy Catalogues

    Full text link
    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires an expert knowledge of galaxy modelling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalogue suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light-cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO's features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.Comment: 17 pages, 11 figures, 2 tables; accepted for publication in ApJS. The Theoretical Astrophysical Observatory (TAO) is now open to the public at https://tao.asvo.org.au/. New simulations, models and tools will be added as they become available. Contact [email protected] if you have data you would like to make public through TAO. Feedback and suggestions are very welcom

    Semi-Analytic Galaxy Evolution (SAGE): Model Calibration and Basic Results

    Full text link
    This paper describes a new publicly available codebase for modelling galaxy formation in a cosmological context, the "Semi-Analytic Galaxy Evolution" model, or SAGE for short. SAGE is a significant update to that used in Croton et al. (2006) and has been rebuilt to be modular and customisable. The model will run on any N-body simulation whose trees are organised in a supported format and contain a minimum set of basic halo properties. In this work we present the baryonic prescriptions implemented in SAGE to describe the formation and evolution of galaxies, and their calibration for three N-body simulations: Millennium, Bolshoi, and GiggleZ. Updated physics include: gas accretion, ejection due to feedback, and reincorporation via the galactic fountain; a new gas cooling--radio mode active galactic nucleus (AGN) heating cycle; AGN feedback in the quasar mode; a new treatment of gas in satellite galaxies; and galaxy mergers, disruption, and the build-up of intra-cluster stars. Throughout, we show the results of a common default parameterization on each simulation, with a focus on the local galaxy population.Comment: 15 pages, 9 figures, accepted for publication in ApJS. SAGE is a publicly available codebase for modelling galaxy formation in a cosmological context, available at https://github.com/darrencroton/sage Questions and comments can be sent to Darren Croton: [email protected]

    Soft clustering analysis of galaxy morphologies: A worked example with SDSS

    Full text link
    Context: The huge and still rapidly growing amount of galaxies in modern sky surveys raises the need of an automated and objective classification method. Unsupervised learning algorithms are of particular interest, since they discover classes automatically. Aims: We briefly discuss the pitfalls of oversimplified classification methods and outline an alternative approach called "clustering analysis". Methods: We categorise different classification methods according to their capabilities. Based on this categorisation, we present a probabilistic classification algorithm that automatically detects the optimal classes preferred by the data. We explore the reliability of this algorithm in systematic tests. Using a small sample of bright galaxies from the SDSS, we demonstrate the performance of this algorithm in practice. We are able to disentangle the problems of classification and parametrisation of galaxy morphologies in this case. Results: We give physical arguments that a probabilistic classification scheme is necessary. The algorithm we present produces reasonable morphological classes and object-to-class assignments without any prior assumptions. Conclusions: There are sophisticated automated classification algorithms that meet all necessary requirements, but a lot of work is still needed on the interpretation of the results.Comment: 18 pages, 19 figures, 2 tables, submitted to A

    The Effect of Major Mergers on Age and Metallicity Across the Fundamental Plane

    Full text link
    Recent low-redshift observations have attempted to determine the star formation histories of elliptical galaxies by tracking correlations between the stellar population parameters (age and metallicity) and the structural parameters that enter the fundamental plane (size and velocity dispersion). These studies have found that velocity dispersion, rather than effective radius or dynamical mass, is the main predictor of a galaxy's stellar age and metallicity. In this work, we apply an analytic model that predicts the structural properties of remnants formed in major mergers to progenitor disk galaxies with properties taken from two different semi-analytic models. We predict the effective radius, velocity dispersion, luminosity, age, and metallicity of the merger remnants, enabling us to compare directly to observations of early-type galaxies. While we find a tight correlation between age and velocity dispersion, we find a stronger dependence of age and metallicity on effective radius than observations report. The correlations arise as a result of the dependence of gas fraction, age, and metallicity on the stellar mass in the progenitor disk galaxies. These dependences induce a rotation in the radius-velocity plane between the correlations with effective radius and circular velocity in the disk galaxy progenitors, and the correlations with effective radius and velocity dispersion in the elliptical galaxy remnants. The differences between our results and those from observations suggest that major mergers alone cannot produce the observed lack of correlation between effective radius and stellar population parameters. Simulations have suggested that subsequent minor mergers introduce scatter in the effective radius while leaving the velocity dispersion essentially unchanged. Incorporating such minor mergers into the model may, then, bring the simulations into closer agreement with observations.Comment: 20 pages, 17 figures. Submitted to MNRA

    Sussing merger trees: a proposed merger tree data format

    Get PDF
    We propose a common terminology for use in describing both temporal merger trees and spatial structure trees for dark-matter halos. We specify a unified data format in HDF5 and provide example I/O routines in C, FORTRAN and PYTHON

    The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors

    Get PDF
    Low luminosity radio-loud active galactic nuclei (AGN) are generally found in massive red elliptical galaxies, where they are thought to be powered through gas accretion from their surrounding hot halos in a radiatively inefficient manner. These AGN are often referred to as "low-excitation" radio galaxies (LERGs). When radio-loud AGN are found in galaxies with a young stellar population and active star formation, they are usually high-power radiatively-efficient radio AGN ("high-excitation", HERG). Using a sample of low-redshift radio galaxies identified within the Sloan Digital Sky Survey (SDSS), we determine the fraction of galaxies that host a radio-loud AGN, fRLf_{RL}, as a function of host galaxy stellar mass, MM_*, star formation rate, color (defined by the 4000 \angstrom break strength), radio luminosity and excitation state (HERG/LERG). We find the following: 1. LERGs are predominantly found in red galaxies. 2. The radio-loud AGN fraction of LERGs hosted by galaxies of any color follows a fRLLEM2.5f^{LE}_{RL} \propto M^{2.5}_* power law. 3. The fraction of red galaxies hosting a LERG decreases strongly for increasing radio luminosity. For massive blue galaxies this is not the case. 4. The fraction of green galaxies hosting a LERG is lower than that of either red or blue galaxies, at all radio luminosities. 5. The radio-loud AGN fraction of HERGs hosted by galaxies of any color follows a fRLHEM1.5f^{HE}_{RL} \propto M^{1.5}_* power law. 6. HERGs have a strong preference to be hosted by green or blue galaxies. 7. The fraction of galaxies hosting a HERG shows only a weak dependence on radio luminosity cut. 8. For both HERGs and LERGs, the hosting probability of blue galaxies shows a strong dependence on star formation rate. This is not observed in galaxies of a different color.[abridged]Comment: 7 pages, 6 figure
    corecore