489 research outputs found

    Halo assembly bias and its effects on galaxy clustering

    Full text link
    The clustering of dark halos depends not only on their mass but also on their assembly history, a dependence we term `assembly bias'. Using a galaxy formation model grafted onto the Millennium Simulation of the LCDM cosmogony, we study how assembly bias affects galaxy clustering. We compare the original simulation to `shuffled' versions where the galaxy populations are randomly swapped among halos of similar mass, thus isolating the effects of correlations between assembly history and environment at fixed mass. Such correlations are ignored in the halo occupation distribution models often used populate dark matter simulations with galaxies, but they are significant in our more realistic simulation. Assembly bias enhances 2-point correlations by 10% for galaxies with M_bJ-5logh brighter than -17, but suppresses them by a similar amount for galaxies brighter than -20. When such samples are split by colour, assembly bias is 5% stronger for red galaxies and 5% weaker for blue ones. Halo central galaxies are differently affected by assembly bias than are galaxies of all types. It almost doubles the correlation amplitude for faint red central galaxies. Shuffling galaxies among halos of fixed formation redshift or concentration in addition to fixed mass produces biases which are not much smaller than when mass alone is fixed. Assembly bias must reflect a correlation of environment with aspects of halo assembly which are not encoded in either of these parameters. It induces effects which could compromise precision measurements of cosmological parameters from large galaxy surveys.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Red Sequence Cluster Finding in the Millennium Simulation

    Full text link
    We investigate halo mass selection properties of red-sequence cluster finders using galaxy populations of the Millennium Simulation (MS). A clear red sequence exists for MS galaxies in massive halos at redshifts z < 1, and we use this knowledge to inform a cluster-finding algorithm applied to 500 Mpc/h projections of the simulated volume. At low redshift (z=0.4), we find that 90% of the clusters found have galaxy membership dominated by a single, real-space halo, and that 10% are blended systems for which no single halo contributes a majority of a cluster's membership. At z=1, the fraction of blends increases to 22%, as weaker redshift evolution in observed color extends the comoving length probed by a fixed range of color. Other factors contributing to the increased blending at high-z include broadening of the red sequence and confusion from a larger number of intermediate mass halos hosting bright red galaxies of magnitude similar to those in higher mass halos. Our method produces catalogs of cluster candidates whose halo mass selection function, p(M|\Ngal,z), is characterized by a bimodal log-normal model with a dominant component that reproduces well the real-space distribution, and a redshift-dependent tail that is broader and displaced by a factor ~2 lower in mass. We discuss implications for X-ray properties of optically selected clusters and offer ideas for improving both mock catalogs and cluster-finding in future surveys.Comment: final version to appear in MNRAS. Appendix added on purity and completeness, small shift in red sequence due to correcting an error in finding i

    Satellite Galaxies and Fossil Groups in the Millennium Simulation

    Full text link
    We use a semianalytic galaxy catalogue constructed from the Millennium Simulation to study the satellites of isolated galaxies in the LCDM cosmogony. This sample (~80,000$ bright primaries, surrounded by ~178,000 satellites) allows the characterization, with minimal statistical uncertainty, of the dynamical properties of satellite/primary galaxy systems in a LCDM universe. We find that, overall, the satellite population traces the dark matter rather well: its spatial distribution and kinematics may be approximated by an NFW profile with a mildly anisotropic velocity distribution. Their spatial distribution is also mildly anisotropic, with a well-defined ``anti-Holmberg'' effect that reflects the misalignment between the major axis and angular momentum of the host halo. The isolation criteria for our primaries picks not only galaxies in sparse environments, but also a number of primaries at the centre of ''fossil'' groups. We find that the abundance and luminosity function of these unusual systems are in reasonable agreement with the few available observational constraints. We recover the expected L_{host} \sigma_{sat}^3 relation for LCDM models for truly-isolated primaries. Less strict primary selection, however, leads to substantial modification of the scaling relation. Our analysis also highlights a number of difficulties afflicting studies that rely on blind stacking of satellite systems to constrain the mean halo mass of the primary galaxies.Comment: 18 pages, 14 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    Properties of Galaxy Groups in the SDSS: II.- AGN Feedback and Star Formation Truncation

    Get PDF
    Successfully reproducing the galaxy luminosity function and the bimodality in the galaxy distribution requires a mechanism that can truncate star formation in massive haloes. Current models of galaxy formation consider two such truncation mechanisms: strangulation, which acts on satellite galaxies, and AGN feedback, which predominantly affects central galaxies. The efficiencies of these processes set the blue fraction of galaxies as function of galaxy luminosity and halo mass. In this paper we use a galaxy group catalogue extracted from the Sloan Digital Sky Survey (SDSS) to determine these fractions. To demonstrate the potential power of this data as a benchmark for galaxy formation models, we compare the results to the semi-analytical model for galaxy formation of Croton et al. (2006). Although this model accurately fits the global statistics of the galaxy population, as well as the shape of the conditional luminosity function, there are significant discrepancies when the blue fraction of galaxies as a function of mass and luminosity is compared between the observations and the model. In particular, the model predicts (i) too many faint satellite galaxies in massive haloes, (ii) a blue fraction of satellites that is much too low, and (iii) a blue fraction of centrals that is too high and with an inverted luminosity dependence. In the same order, we argue that these discrepancies owe to (i) the neglect of tidal stripping in the semi-analytical model, (ii) the oversimplified treatment of strangulation, and (iii) improper modeling of dust extinction and/or AGN feedback. The data presented here will prove useful to test and calibrate future models of galaxy formation and in particular to discriminate between various models for AGN feedback and other star formation truncation mechanisms.Comment: 16 pages, 5 figures, submitted to MNRA

    PassNote: A Feedback Tool for Improving Student Success Outcomes

    Get PDF
    When Purdue University faculty asked for assistance in composing feedback messages to students, Information Technology at Purdue (ITaP) developed PassNote, a feedback tool that integrates good practice into the process of providing formative assessments. PassNote gives faculty customizable feedback prompts (snippets) and lets them connect students with information and links to services such as tutoring,Supplemental Instruction, library resources, technology tools, and workshops. PassNote message starters are often incomplete, allowing instructors to include course-specific information such as office hours and departmental resources

    Statistical analysis of galaxy surveys — II. The three-point galaxy correlation function measured from the 2dFGRS

    Get PDF
    We present new results for the three-point correlation function, ζ, measured as a function of scale, luminosity and colour from the final version of the 2dF Galaxy Redshift Survey (2dFGRS). The reduced three-point correlation function, Q3~ζ/ξ2, is estimated for different triangle shapes and sizes, employing a full covariance analysis. The form of Q3 is consistent with the expectations for the Λ cold dark matter model, confirming that the primary influence shaping the distribution of galaxies is gravitational instability acting on Gaussian primordial fluctuations. However, we find a clear offset in amplitude between Q3 for galaxies and the predictions for the dark matter. We are able to rule out the scenario in which galaxies are unbiased tracers of the mass at the 9σ level. On weakly non-linear scales, we can interpret our results in terms of galaxy bias parameters. We find a linear bias term that is consistent with unity, b1= 0.93+0.10-0.08 and a quadratic bias c2=b2/b1=-0.34+0.11-0.08. This is the first significant detection of a non-zero quadratic bias, indicating a small but important non-gravitational contribution to the three-point function. Our estimate of the linear bias from the three-point function is independent of the normalization of underlying density fluctuations, so we can combine this with the measurement of the power spectrum of 2dFGRS galaxies to constrain the amplitude of matter fluctuations. We find that the rms linear theory variance in spheres of radius 8 h−1 Mpc is σ8= 0.88+0.12-0.10, providing an independent confirmation of values derived from other techniques. On non-linear scales, where ξ > 1, we find that Q3 has a strong dependence on scale, colour and luminosit

    Interactive 3D visualization for theoretical Virtual Observatories

    Get PDF
    Virtual Observatories (VOs) are online hubs of scientific knowledge. They encompass a collection of platforms dedicated to the storage and dissemination of astronomical data, from simple data archives to e-research platforms offering advanced tools for data exploration and analysis. Whilst the more mature platforms within VOs primarily serve the observational community, there are also services fulfilling a similar role for theoretical data. Scientific visualization can be an effective tool for analysis and exploration of datasets made accessible through web platforms for theoretical data, which often contain spatial dimensions and properties inherently suitable for visualization via e.g. mock imaging in 2d or volume rendering in 3d. We analyze the current state of 3d visualization for big theoretical astronomical datasets through scientific web portals and virtual observatory services. We discuss some of the challenges for interactive 3d visualization and how it can augment the workflow of users in a virtual observatory context. Finally we showcase a lightweight client-server visualization tool for particle-based datasets allowing quantitative visualization via data filtering, highlighting two example use cases within the Theoretical Astrophysical Observatory.Comment: 10 Pages, 13 Figures, Accepted for Publication in Monthly Notices of the Royal Astronomical Societ

    The formation history of elliptical galaxies

    Full text link
    We take advantage of the largest high-resolution simulation of cosmic structure growth ever carried out -- the Millennium Simulation of the concordance LambdaCDM cosmogony -- to study how the star formation histories, ages and metallicities of elliptical galaxies depend on environment and on stellar mass. We concentrate on a galaxy formation model which is tuned to fit the joint luminosity/colour/morphology distribution of low redshift galaxies. Massive ellipticals in this model have higher metal abundances, older luminosity-weighted ages, shorter star formation timescales, but lower assembly redshifts than less massive systems. Within clusters the typical masses, ages and metal abundances of ellipticals are predicted to decrease, on average, with increasing distance from the cluster centre. We also quantify the effective number of progenitors of ellipticals as a function of present stellar mass, finding typical numbers below 2 for M* < 10^{11} Msun, rising to about 5 for the most massive systems. These findings are consistent with recent observational results that suggest ``down-sizing'' or ``anti-hierarchical'' behaviour for the star formation history of the elliptical galaxy population, despite the fact that our model includes all the standard elements of hierarchical galaxy formation and is implemented on the standard, LambdaCDM cosmogony.Comment: 12 pages, 11 figures, minor revisions, MNRAS accepte

    AEGIS: The color-magnitude relation for X-ray selected AGN

    Get PDF
    We discuss the relationship between rest-frame color and optical luminosity for X-ray sources in the range 0.6<z<1.4 selected from the Chandra survey of the Extended Groth Strip (EGS). These objects are almost exclusively active galactic nuclei (AGN). While there are a few luminous QSOs, most are relatively weak or obscured AGN whose optical colors should be dominated by host galaxy light. The vast majority of AGN hosts at z~1 are luminous and red, with very few objects fainter than M_{B}=-20.5 or bluer than U-B=0.6. This places the AGN in a distinct region of color-magnitude space, on the ``red sequence'' or at the top of the ``blue cloud'', with many in between these two modes in galaxy color. A key stage in the evolution of massive galaxies is when star formation is quenched, resulting in a migration from the blue cloud to the red sequence. Our results are consistent with scenarios in which AGN either cause or maintain this quenching. The large numbers of red sequence AGN imply that strong, ongoing star formation is not a necessary ingredient for AGN activity, as black hole accretion appears often to persist after star formation has been terminated.Comment: 5 pages, 2 figures, accepted for publication in AEGIS ApJ Letters special editio

    An optical spectroscopic survey of the 3CR sample of radio galaxies with z<0.3. IV. Discovery of the new spectroscopic class of relic radio galaxies

    Get PDF
    From an optical spectroscopic survey of 3CR radio galaxies with z<0.3, we discovered a new spectroscopic class of powerful radio-loud AGN. The defining characteristics of these galaxies are that compared with radio galaxies of similar radio luminosity they have: a [O III]\Hb ratio of ~0.5, indicative of an extremely low level of gas excitation; a large deficit of [O III] emission and radio core power. We interpret these objects as relic AGN, i.e. sources that experienced a large drop in their level of nuclear activity, causing a decrease in their nuclear and line luminosity. This class opens a novel approach to investigating lifetimes and duty cycles of AGN.Comment: Accepted for publication in A&
    corecore