316 research outputs found

    PHYLOGENETIC RELATIONSHIPS AMONG WEST INDIAN XENODONTINE SNAKES (SERPENTES; COLUBRIDAE) WITH COMMENTS ON THE PHYLOGENY OF SOME MAINLAND XENODONTINES

    Get PDF
    The evolutionary relationships of the West Indian (W. I.) xenodontine snake assemblage has been considered as either monophyletic or paraphyletic. Allozyme data from protein electrophoresis were used to estimate the phylogeny of the W. I. xenodontine snakes. Forty-two species from 25 genera (mainland and W. I. taxa) were examined. The phylogenetic relationships were estimated using parsimony analyses with successive approximation weighting on the data coded two ways: (1) the allele as the character and (2) the locus as the character. The most parsimonious trees from both coding methods indicated a non-monophyletic W. I. xenodontine assemblage. Three W.I. groups were recovered in both coding methods: (1) Jamaican Arrhyton and Darlingtonia, (2) Uromacer and the Cuban Arrhyton, and (3) Alsophis, Ialtris, and the South American Alsophis elegans. The relationships of Hypsirhynchus, Antillophis and Arrhyton exiguum were unstable. Nomenclatural changes are recommended for Darlingtonia, Arrhyton, Ialtris and Alsophis

    PHYLOGENY OF SOME MIDDLE AMERICAN PITVIPERS BASED ON A CLADISTIC ANALYSIS OF MITOCHONDRIAL 12S AND 16S DNA SEQUENCE INFORMATION

    Get PDF
    The cladistic relationships of several Middle American pitvipers representing the genera Bothrops (sensu stricto), Bothriechis, Cerrophidion, Lachesis and Porthidium were determined using mitochondrial 12S and 16S DNA sequence information. Maximum parsimony analyses were performed using PAUP on aligned sequences that included published information for related taxa. Two sets of analyses were conducted: one disregarding gaps in the aligned matrix, and another with gaps treated as a fifth base. When gaps were excluded resolution declined, although the general arrangement of the taxa changed little. A consistent relationship was the grouping of ((Porthidium, Bothriechis) Lachesis). The placement of Lachesis, as nested within other bothropoid genera, is only partially supported by results of other authors. The arrangement of Crotalus, Bothrops and Cerrophidion was ambiguous when gaps were discounted. In both trees, Agkistrodon was basal to the New World forms. The remaining genera, Trimeresurus (Protobothrops), Vipera, Azemiops, and Coluber, were uniformly distant to the former taxa. Also of interest is the lack of close relationship, based on the DNA data here and elsewhere, between Bothrops and Porthidium. This is in striking contrast to results based on morphologic and allozymic analyses of previous studies. It is concluded that additional DNA sequence information from a larger sample of taxa will be necessary to better assess the phylogenetic relationships among Middle American and related pitvipers

    Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation.

    Get PDF
    Chlamydia pneumoniae is detected by macrophages and other APCs via TLRs and can exacerbate developing atherosclerotic lesions, but how that occurs is not known. Liver X receptors (LXRs) centrally control reverse cholesterol transport, but also negatively modulate TLR-mediated inflammatory pathways. We isolated peritoneal macrophages from wild-type, TLR2, TLR3, TLR4, TLR2/4, MyD88, TRIF, MyD88/TRIF, and IFN regulatory factor 3 (IRF3) KO mice, treated them with live or UV-killed C. pneumoniae in the presence or absence of oxidized LDL, then measured foam cell formation. In some experiments, the synthetic LXR agonist GW3965 was added to macrophages infected with C. pneumoniae in the presence of oxidized LDL. Both live and UV-killed C. pneumoniae induced IRF3 activation and promoted foam cell formation in wild-type macrophages, whereas the genetic absence of TLR2, TLR4, MyD88, TRIF, or IRF3, but not TLR3, significantly reduced foam cell formation. C. pneumoniae-induced foam cell formation was significantly reduced by the LXR agonist GW3965, which in turn inhibited C. pneumoniae-induced IRF3 activation, suggesting a bidirectional cross-talk. We conclude that C. pneumoniae facilitates foam cell formation via activation of both MyD88-dependent and MyD88-independent (i.e., TRIF-dependent and IRF3-dependent) pathways downstream of TLR2 and TLR4 signaling and that TLR3 is not involved in this process. This mechanism could at least partly explain why infection with C. pneumoniae accelerates the development of atherosclerotic plaque and lends support to the proposal that LXR agonists might prove clinically useful in suppressing atherogenesis

    Mitochondrial quality control in health and cardiovascular diseases

    Get PDF
    Cardiovascular diseases (CVDs) are one of the primary causes of mortality worldwide. An optimal mitochondrial function is central to supplying tissues with high energy demand, such as the cardiovascular system. In addition to producing ATP as a power source, mitochondria are also heavily involved in adaptation to environmental stress and fine-tuning tissue functions. Mitochondrial quality control (MQC) through fission, fusion, mitophagy, and biogenesis ensures the clearance of dysfunctional mitochondria and preserves mitochondrial homeostasis in cardiovascular tissues. Furthermore, mitochondria generate reactive oxygen species (ROS), which trigger the production of pro-inflammatory cytokines and regulate cell survival. Mitochondrial dysfunction has been implicated in multiple CVDs, including ischemia-reperfusion (I/R), atherosclerosis, heart failure, cardiac hypertrophy, hypertension, diabetic and genetic cardiomyopathies, and Kawasaki Disease (KD). Thus, MQC is pivotal in promoting cardiovascular health. Here, we outline the mechanisms of MQC and discuss the current literature on mitochondrial adaptation in CVDs

    Cryptic Diversity and Conservation of Gopher Frogs across the Southeastern United States

    Get PDF
    Identifying cryptic biodiversity is fundamental to evolutionary biology and to conservation efforts. This study investigated range-wide genetic diversity of Gopher Frogs, Lithobates capito, across the southeastern United States coastal plain to determine implications for taxonomy and conservation. We collected data for two mtDNA regions in 21 populations to identify genetic structure across the geographic distribution of the species. Based on population genetic, phylogenetic, and genealogical analyses, we recovered three reciprocally monophyletic mtDNA lineages corresponding to mainland coastal plain populations and two lineages within peninsular Florida. Breakpoints for these lineages did not occur in previously identified hotspots of amphibian phylogeographic breaks and did not follow currently recognized subspecies designations. We recommend these lineages be recognized as separate distinct population segments and be considered separately by the U.S. Fish and Wildlife Service for listing under the Endangered Species Act. Additionally, we propose an evolutionary hotspot for amphibians that deserves further attentio
    • …
    corecore